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1   INTRODUCTION 

This report presents the final results the research grant "Organization-based Model-driven Development 
of High-assurance Multiagent Systems" performed at Kansas State University. The goal of this research 
is to develop methods, techniques, and tools to allow developers to design and build highly adaptive 
distributed systems that are assured of meeting specific design goals. Specifically, there were three key 

focus areas in this research: 

(1) to  develop   a   model-driven   software  engineering  methodology  for  the  development  of 

high-assurance, highly adaptive multiagent systems, 

(2) to explore policy-based mechanisms for specifying application-specific properties and metrics 

for adaptive multiagent systems, and 

(3) to develop an integrated set of tools to support our proposed software methodology, including 
automated verification capabilities based on lightweight and model checking approaches. 

1.1   Key Results 

During the project, we had several key results. These are outlined here and discussed in more detail 

below. 

\Ne develop the Organization-based Multiagent Systems Engineering (O-MaSE) methodology, which is a 
customizable, model-driven software engineering methodology for the development of high-assurance, 
highly adaptive multiagent systems. The O-MaSE Process Framework is a methodology framework that 
allows process engineers to construct custom agent-oriented processes using a set of method fragments, 
all of which are based on a common metamodel. To achieve this, we define O-MaSE in terms of a 

metamodel, a set of method fragments, and a set of guidelines. The O-MaSE metamodel defines a set of 
analysis, design, and implementation concepts and a set of constraints between them. The method 
fragments define how a set of analysis and design products may be created and used within O-MaSE. 
Finally, guidelines define how the method fragment may be combined to create valid O-MaSE processes, 

which we refer to as O-MaSE compliant processes. 

We defined and exploited a new type of policy for use in specifying application-specific properties for 
adaptive multiagent systems, called guidance policies. We developed a formal trace-based foundation 
for law and guidance policies and a conflict resolution strategy for choosing between which guidance 
policies to violate under circumstances where not all guidance policies can be followed. Next, we 
developed an organizational policy-based approach to self-tuning and a generalized algorithm based on 
Q-Learning to implement the policy-based tuning. Finally, we developed a formal method for generating 
specifications multiagent systems from abstract qualities and a method of automatically discovering 
potential conflicts in abstract qualities given a system design. The approach uses highly-optimized model 

checking techniques to generate system traces from which policies are mined. 

We created a modeling checking based framework for producing predictive metrics for adaptive, complex 
systems. Here we combined the relationships between the goals, roles, and agents in such systems to 
enumerate all legal execution traces and then provide metrics based on those traces. Specifically, we 
defined a flexibility metric that is capable of predicting how many different ways a system may achieve 
the overall system goals as well as an occurrence metrics that measures how many times a particular 
goal, role, or agent is actually used in achieving the overall system goal. Both these sets of goals are 
computed at design time, thus allowing the designer to make requisite changes much cheaper than 
waiting until simulation or system testing. 



Develop the agentTool III toolset as a way to integrate the research done in this project, as well as for 
demonstrating the effectiveness and relevance of our approaches. The agentTool III (aT3) development 
environment provides traditional and advanced model creation tools to support the analysis, design, and 
implementation of multiagent systems. aT3 also provides a lightweight verification component and a 
Bogor-based metrics computation component. In addition, aT3 provides the ability to compose, verify, 
and maintain customized O-MaSE complaint processes. In all, aT3 has five components: the graphical 
editor, the process editor, the verification framework, the metrics computation component, and the 
code generation facility. 

1.2   Publications 

The following publications were a result of the work done on this grant, either entirely or in part. The list 
includes three journal articles, one book chapter, and eight conference or workshop proceedings papers. 

1. Scott DeLoach, Lin Padgham, Anna Perini, Angelo Susi, and John Thangarajah. Using Three AOSE 
Toolkits to Develop a Sample Design. International Journal of Agent Oriented Software 
Engineering, (in press). 

2. Scott A. DeLoach. Moving Multiagent Systems from Research to Practice, in Special section on 
Future of software engineering and multi-agent systems. International Journal of Agent-Oriented 
Software Engineering (IJAOSE). (in press). 

3. Scott A. DeLoach. Organizational Model for Adaptive Complex Systems, in Virginia Dignum (ed.) 
Multi-Agent Systems: Semantics and Dynamics of Organizational Models. IG1 Global: Hershey, 
PA. ISBN: 1-60566-256-9 (March 2009). 

4. Juan C. Garcia-Ojeda, Scott A. DeLoach, and Robby. agentTool Process Editor: Supporting the 
Design of Tailored Agent-based Processes. Proceedings of the 24th Annual ACM Symposium on 
Applied Computing, Honolulu, Hawaii, USA. March 8 -12, 2009. 

5. Scott Harmon, Scott DeLoach, and Robby. From Abstract Qualities to Concrete Specification 
using Guidance Policies. Proceedings of the Proceedings of 8th International Conference on 

Autonomous Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra, and 
Castelfranchi (eds.). May, 10-15, 2009, Budapest, Hungary. 

6. Scott A. DeLoach, Walamitien Oyenan and Eric T. Matson. A Capabilities Based Model for 
Artificial Organizations. Journal of Autonomous Agents and Multiagent Systems. Volume 16, no. 
1, February 2008, pp. 13-56. 

7. Scott J. Harmon, Scott A. DeLoach, Robby, and Doina Caragea. Leveraging Organizational 
Guidance Policies with Learning to Self-Tune Multiagent Systems Proceedings of the Second IEEE 
International Conference on Self-Adaptive and Self-Organizing Systems Isola di San Servolo 
(Venice), Italy, October 20-24, 2008. 

8. Lin Padgham, Michael Winikoff, Scott DeLoach, and Massimo Cossentino. A Unified Graphical 
Notation for AOSE. Proceedings of the 9th International Workshop on Agent Oriented Software 
Engineering, Estoril Portugal, May 2008. 

9. Scott A. DeLoach. Developing a Multiagent Conference Management System Using the O-MaSE 
Process Framework. In Michael Luck (eds.), Agent-Oriented Software Engineering VIM: The 8th 
International Workshop on Agent Oriented Software Engineering (AOSE 2007), LNCS 4951, 
171-185, Springer-Verlag: Berlin. 



10. Juan C. Garcia-Ojeda, Scott A. DeLoach, Robby, Walamitien H. Oyenan and Jorge Valenzuela. 
O-MaSE: A Customizable Approach to Developing Multiagent Development Processes. In Michael 
Luck (eds.), Agent-Oriented Software Engineering VIII: The 8th International Workshop on Agent 
Oriented Software Engineering (AOSE 2007), LNCS4951, 1-15, Springer-Verlag: Berlin. 

11. Scott Harmon, Scott A. DeLoach, and Robby. Trace-based Specification of Law and Guidance 
Policies for Multiagent Systems. The Eighth Annual International Workshop "Engineering 
Societies in the Agents World" (ESAW 07) Athens, Greece, October, 2007. 

12. Robby, Scott A. DeLoach, Valeriy A. Kolesnikov. Using Design Metrics for Predicting System 
Flexibility, in Luciano Baresi, Reiko Heckel (eds.) Fundamental Approaches to Software 
Engineering: 9th International Conference, FASE 2006, Part of the Joint European Conferences 
on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006. Springer 

LNCS Vol 3922, pp 184-198, 2006. 

The report is laid out as follows. In the next subsections, we describe general background material 
relevant to each our focus area. First, we describe the Organizational Model for Adaptive Complex 
Systems (OMACS) followed by a description of the customizations to the model checking techniques and 
Bogor engine developed in this research, and the concept of system traces used extensively in the policy 
and metrics focus areas. We then present the three focus areas Policies for Multiagent Systems, 
Organization-Based Multiagent Systems Engineering and the agentTool III Development Environment, 

and Predictive Metrics for Multiagent Systems. 

1.3   Background 

1.3.1   OMACS 

The Organizational Model for Adaptive Complex Systems (OMACS) framework (DeLoach, Oyenan, & 
Matson, 2008) defines an organizational structure that allows multiagent teams to reconfigure at 
runtime, thus enabling them to cope with unpredictable situations in a dynamic environment. This 
framework provides all the knowledge required in order for a multiagent system to know itself and be 
able to reason about its own status. Hence, multiagent teams are not limited by a predefined set of 
configurations, and they can have the appropriate information about their team, thus enabling them to 
reconfigure in order to achieve their team goals more efficiently and effectively. The designer provides 
high-level guidance about the organization (team of agents), which will enable it to self-configure based 
on the current goals and team capabilities. These characteristics make the OMACS model very suitable 
for designing autonomic multiagent systems. 

1.3.1.1 The OMACS metamodel 

The OMACS defines an organization as: (1) a set of goals (G) that the team is attempting to accomplish, 

(2) a set of roles (R) that must be played to achieve those goals, (3) a set of capabilities (C) required to 
play those roles, and (4) a set of agent (A) assigned to roles in order to achieve the organization goals; 

there are more entities defined in OMACS which are however not relevant for this paper. Figure 1 shows 
the OMACS metamodel using the standard UML notation. Only the entities discussed in this report are 
shown. The reader is referred to (DeLoach, Oyenan, & Matson, 2008) for the complete model. 

1.3.1.2 Goals 

Goals are a high-level description of what the system is supposed to be doing (Russel & Norvig, 20002). 
In OMACS, goals are represented by the Goal Model for Dynamic Systems (GMoDS), which includes the 
goal definitions, goal decomposition, and the relationship between the goals and their subgoals; 
subgoals are either conjunctive (AND-decomposed) or disjunctive (OR-decomposed) (van Lamsweerde, 



Darimontm, & Letier, 1998). Typically, each organization has a top-level goal that is decomposed into 
refined subgoals. Eventually, this top-level goal is refined into a set of leaf goals that will be actually 
pursued by the organization. The set of all organizational goals is denoted as 6. The active goal set, Go 

(where Go c G), is the set of goals that an organization is trying to achieve at the current time. Go 
changes as new goals are inserted or current goals are achieved. Note that only leafs goals can be in Go. 

Organization 
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Figure 1. Simplified OMACS Metamodel 

GMoDS takes the initial Goal Model and adds additional information to capture the dynamism associated 
with the system. GMoDS introduces three concepts into AND/OR goal modeling approaches to handle 
goal sequencing, the creation of goal instances, and parameterized goals. To capture the sequencing of 
OMACS-based systems, there is a time-based relationship that exists between goals. We say goal gl 
precedes goal g2, if gl must be satisfied before any part of g2 can be satisfied. This allows the 
organization to work on one part of the goal tree at a time. During the pursuit of specific goals, events 
may occur that cause the instantiation of new goals. If an event can occur during the pursuit of goal gl 
that causes the instantiation of goal g2, we say that gl triggers g2. Goals without a specific trigger are 
created at system initialization, while other goals are created when specific events occur. These 
instantiated goals may be parameterized to allow the goal to take on a context sensitive meaning. For 
instance, in a conference management system, we might have a goal to review a paper. However, this 
goal is ambiguous until we specify which specific paper is to be reviewed. Thus, we add a parameter to 
the goal to specify the paper to be reviewed. 

1.3.1.3 Roles 

Roles are a high level description of how to achieve some particular goals (Ferber, Gutknecht, Jonker, 
Muller, & Treur, 2002). In OMACS, each organization has a set of roles that it can use to achieve its goals. 
The achieves function, which associates a score between 0 and 1 to each <goal, role> pair, tells how well 
that particular role can be used to achieve that goal (1 being the maximum score). In addition, each role 
requires a set of capabilities, which are inherent to particular agents. Agents must possess all the 
required capabilities in order to be considered as a potential candidate to assume that role. 

1.3.1.4 Capabilities 

In the OMACS framework, capabilities are fundamental in determining which agents can be assigned to 
what roles in the organization (Matson &DeLoach, 2003). Agent may possess two types of capabilities: 
(1) hardware capabilities like actuator or effectors, and (2) software capabilities like computational 
algorithms or resources usage. 



1.3.1.5   Agents 

Agents represent the autonomies elements of the system (Kephart & Chess, 2003). Within an OMACS 
organization, agents have the ability to communicate with each other, accept assignments to play roles 
that match their capabilities, and work to achieve their assigned goals. Each agent is responsible for 
managing its own state and its interactions with the environment and with other agents. Once the 
system provides goals in the form of high-level notions, the agents are expected to determine 
themselves what behavior is necessary to fulfill them. When assuming a role, the agent needs to follow 
the guidance provided by the high level description supplied by that role. For that, a plan on how to play 
a role needs to be provided at design time either by the role or the agent designer. In OMACS, a tuple 
<a,r,g> represents an assignment if agent a has been assigned by the organization to play role r in order 
to achieve goal g. As discussed above, however, only agents with the right set of capabilities may be 

assigned to a role. The assignment set 0 represents the set of all the current assignments in the 
organization. To capture a given agent's capabilities, OMACS defines a possesses function, which maps 
each <agent, capability> pair to a value between 0 and 1, describing the quality of the capability 

possessed by an agent (1 representing the maximum quality). 

1.3.2 The Bogor Model Checking Framework 

Bogor (Robby, Dwyer, & Hatcliff, 2003) is an extensible and highly modular model checking framework 
that enables effective incorporation of domain knowledge into verification models, associated model 
checking algorithms, and optimizations, by focusing on the following principles: 

• Direct Support of High-level Language Features: Bogor provides a rich base modeling language 
including features that allow for dynamic creation of objects and threads, garbage collection, 
virtual method calls and exception handling. For these primitives, we have extended Bogor's 
default algorithms to support state-of-the-art model reduction/optimization techniques that we 
have developed by customizing for modern software existing techniques such as collapse 
compression, heap symmetry, thread symmetry, and partial-order reductions. 

• Extensible Modeling Language: Bogor's modeling language can be extended with new primitive 
types, expressions, and commands associated with a particular domain (e.g., multi-agent 
systems, avionics, security protocols, etc.) and a particular level of abstraction (e.g., design 

models, source code, byte code, etc.) 

• Open Modular Architecture: Bogor's well-organized module facility allows new algorithms (e.g., 
for state-space exploration, state storage, etc) and new optimizations (e.g., heuristic search 
strategies, domain-specific scheduling, etc.) to be easily swapped in to replace Bogor's default 

model checking algorithms. 

• Design for Encapsulation: Bogor is written in Java and comes wrapped as a plug-in for Eclipse, an 
open source and extensible universal tool platform originally from IBM. This allows Bogor to be 
deployed as a stand-alone tool with a rich graphical user interface and a variety of visualization 
facilities, or encapsulated within other development or verification tools for a specific domain. 

In short, Bogor aims to be not only a robust and feature-rich software model checking tool that handles 
the language constructs found in modern large-scale software system designs and implementations, it 
also aims to be a model checking/romewor/c that enables researchers and engineers to rapidly create 

families of domain-specific model checking engines. 

1.3.3 Multiagent Traces 

There are several observable events in an OMACS system. A system event is simply an action taken by 
the system. In this paper, we are concerned with specific actions that the organization takes. For 



instance, an assignment of an agent to a role is a system event. The completion of a goal is also a system 
event. In an OMACS system, we can have the system events of interest shown in Table 1. 

At any stage in a multiagent system, there may be certain properties of interest. Some may be 
domain-specific (only relevant to the current system), while others may be general properties such as 
the number of roles an agent is currently playing. State properties that are relevant to the examples we 
are presenting in the next section are shown in Table 1. 

Table 1. Events and Properties of Interest 

System Events Definition 
CfGi) loa\ gi has been completed. 
r(G0 goal g, has been triggered. 
A(ai, rj, gk) agent ai has been assigned role n to achieve goal gk. 

Properties Definition 
a.reviews the number of reviews agent a has performed. 

a.vacuumedRooms the number of rooms agent a has vacuumed. 

1.3.3.1   System Traces 

In order to describe multiagent system execution, we use the notion of a system trace. An (abstract) 
system trace is a projection of system execution with only desired state and event information preserved 
(role assignments, goal completions, domain-specific state property changes, etc). In our approach, we 
are only concerned with the events and properties given above and only traces that result in a successful 
completion of the system goal. Let E be an event of interest and P be a property of interest. A change of 
interest in a property is a change for which a system designer has made some policy. For example, if a 
certain integer should never exceed 5, a change of interest would be when that integer became greater 
than 5 and when that integer became less than 5. Thus a change of interest in a property is simply an 

abstraction of all the changes in the property. AP indicates a change of interest in property P. A system 
trace may contain both events and changes of interest in properties. Changes of interest in properties 
may be viewed as events, however, for simplicity we include both and use both interchangeably. Thus, a 
system trace is defined as: 

Ej (1) 

As shown in Equation 1, a trace is simply a sequence of events. An example sub-trace of a multiagent 

system, where g, is a goal, ai is an agent, and r, is a role, might be: 

- T(gd -* A(a1,rl,gl) -► C(gi) (2) 

Equation 2 means that goal gi is triggered, then agent a! is assigned role r/ to achieve goal gi, finally, 
goal g/ is completed. 

We use the terms legal trace and illegal trace. An illegal trace is an execution we do not want our system 
to exhibit, while a legal trace is an execution that our system may exhibit. Intuitively, policies cause some 
traces to become illegal, while others remain legal. 

We are able to use the notion of system traces because the framework we are using to build multiagent 
systems constructs mathematically specified models (e.g., DeLoach etal., 2008, Miller, 2007) of various 
aspects of the system (e.g., goal model, role model, etc.). This can be leveraged to formally specify 
policies as restrictions of system traces. Once we have a formal definition of system traces, we can 
leverage existing research on property specification and concurrent program analysis. 

10 
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Figure 2. System Traces 

Figure 2 shows a graphical depiction of system 
traces showing the fan-out at a decision point. 

Starting at state Si, the system has three 
options, after that decision is made, and the 
traces diverge. The set of traces form a 
computation tree. We use this structure to 
determine what choices to make at each 
decision point in order to maximize (or 
minimize) some metric. The choice may be 
what role to or what agent to use to achieve a 
goal, or even what goal to pursue (in the case 
of OR goals). It is important to note that the 
divergence in the traces may also happen by 

changes in goal parameters, which are normally beyond the control of the system. Thus, the metrics and 

policies generated may need to take into account some aspect of the goal parameter. 

We used Bogor (Robby, Dwyer, & Hatcliff, 2003) to generate the system traces using the models defined 
by the OMACS meta-model. Bogor is an extensible, state of the art model checker. Our customized 
Bogor uses an extended GMoDS goal model, a role model, and an agent model to generate traces of a 
multiagent system. We have extended the GMoDS model with user-adjustable maximum and minimum 
bounds on the triggers relationship in order to limit the exploration of the trace-space in the model 
checker. The traces consist of a sequence of agent goal assignment achievements. We generate only 
traces in which the top-level goal is achieved (system success). 

Agent goal assignment: An agent goal assignment is defined as a tuple, {G(x), R, A), containing a 
parameterized goal G(x), a role R, and an agent A. The goal's parameter x may be any domain specific 
specialization of the goal G given at the time the goal is dispatched (triggered) to the system. 

11 
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2   POLICIES FOR MULTIAGENT SYSTEMS 

As computer systems have been charged with solving problems of greater complexity, the need for 
distributed, intelligent systems have increased. As a result, there has been a focus on creating systems 
based on interacting autonomous agents. This investigation has created an interest in multiagent 
systems and multiagent system engineering, which proscribes formalisms and methods to help software 
engineers design multiagent systems. One aspect of multiagent systems that is receiving considerable 
attention is the area of policies. These policies have been used to describe the properties of a multiagent 
system-whether that be behavior or some other design constraints. Policies are essential in designing 
societies of agents that are both predictable and reliable (Kephart & Chess, 2003). Policies have 
traditionally been interpreted as properties that must always hold. However, this does not capture the 
notion of policies in human organizations, as they are often used as normative guidance, not strict laws. 
Typically, when a policy cannot be followed in a multiagent system, the system cannot achieve its goals, 
and thus, it cannot continue to perform. In contrast, policies in human organizations are often 
suspended in order to achieve the overall goals of the organization. We believe that such an approach 
could be extremely beneficial to multiagent systems residing in a dynamic environment. Thus, we want 

to enable developers to guide the system without constraining it to the point where it cannot function 

effectively or loses its autonomy. 

A robust system should adapt to environments, recover from failure, and improve over time. In human 
organizations, policies evolve over time and are adapted to overcome failures. New policies are 
introduced to avoid unfavorable situations. A robust organization-based multiagent system should also 
be able to evolve its policies and introduce new ones to avoid undesirable situations. 

Organization-based multiagent systems engineering has been proposed as a way to design complex 
systems that adapt to their environment (Bernon, Gleizes, & Picard, 2005, DeLoach et al., 2007). Agents 
interact and can be given tasks depending on their individual capabilities. The system designer, however, 
may not have planned for every possible environment within which the system may be deployed. The 
agents themselves may exhibit particular properties that were not initially anticipated. As multiagent 
systems grow, configuration and tuning of these systems can become as complex as the problems they 

claim to solve. 

In this section, we introduce guidance policies as formal rules that are applied to OMACS systems. This is 
consistent with usage in formalizations such as KAoS (Uszok et al., 2003) and PONDER (Damianou, Dulay, 
Lupu, & Sloman, 2000). Guidance policies are a trace-based formalization of policies 'that need not 
always be followed'. They must be followed when the system can still progress toward achieving its goal. 
If the system cannot continue with the guidance polices, they may be suspended temporarily. The 
guidance policies may be arranged in a more-important-than relation, creating a set of lattices. The 
policies are suspended from least-important to most-important. Thus it is possible to have conflicting 
guidance policies and yet still have a valid and viable system. 

2.1   Contributions 

Our work on multiagent policies was divided into three phases. First, we defined the notion of guidance 
policies as a way to provide guidance to the system while still maintaining flexibility. Second, we 
developed an approach to create a self-tuning mechanism based on the use of guidance policies. Finally, 
we applied guidance policies to the problem of satisfying abstract qualities/non-functional requirements 
in an adaptive system. We validated each all of the work in this area using simulation and 
experimentation. The main contributions of each of the three phases are described below. 

13 



1) We developed (1) a/ormo/trace-based foundation for law and guidance policies, (2) a conflict 
resolution strategy for choosing between which guidance policies to violate. 

2) We developed (1) an organizational policy-based approach to self-tuning, (2) a generalized 
algorithm based on Q-Learning to implemert the policy-based tuning. 

3) We developed (1) a formal method for generating specifications at design time for multiagent 
systems from abstract qualities, (2) a method of automatically discovering potential conflicts in 
abstract qualities given a system design. 

2.2 Background 

Policies have been considered for multiagent systems for some time. Efforts have been made to 
characterize, represent, and reason (Bradshaw etal., 2003) about policies in the context of multiagent 
systems. Policies have been referred to as laws in the past. Yoav Shoham and Moshe Tennenholtz wrote 
in (Shoham & Tennenholtz, 1995) about social laws for multiagent systems. They showed how policies 
could help a system to work together, similar to how our rules of driving on a predetermined side of the 
road help the traffic to move smoothly. There has also been work on detecting global properties (Stoller, 
Unnikrishnan, & Liu, 2000) of a distributed system, which could in turn be used to suggest policies for 
that system. Policies have also been proposed as a way to help assure that agents and that the entire 
multiagent system behave within certain boundaries. They have also been proposed as a way to specify 
security constraints in multiagent systems (Kagal, Finin, & Joshi, 2003, Paruchuri, Tambe, Ordonez, & 
Kraus, 2006). There has been work to define policy languages by defining a description logic (Uszok 
et al., 2003). Policies have also been referred to as norms. Much work has been done on the formal 
specification of these norms (Artikis, Sergot, & Pitt, 2007). We are taking this formal approach in our 
specification of guidance and law policies. Norms, however, are usually associated with open 
systems-while we are concerned with closed, cooperative systems. We want to use formal methods to 
prove whether a given system will abide by the policies as expected. Thus, we must give our guidance 
policies for multiagent societies a solid formal foundation. In order to achieve this end, we borrow 
concepts that are widely used in program analysis, in particular, model checking. Taking a model 
checking approach to policies has been done (Vigano & Colombetti, 2007) and is a natural extension of 
program analysis. 

2.3 Exemplar Systems 

We used several example systems throughout this research project. Two of the more complex systems 
are explained below. Two others are introduced where needed due to their simplicity and limited scope. 

2.3.1   Conference Management Example 

A well-known example in multiagent systems is the Conference Management (Zambonelli, Jennings, & 
Wooldridge, 2001, DeLoach, 2002) example. The Conference Management example models the workings 
of a scientific conference, for example, authors submit papers, reviewers review the submitted papers, 
and certain papers are selected for the conference and printed in the proceedings. Figure 3 shows the 
complete goal model for the conference management example, which we are using to illustrate our 
policies. In this example, a multiagent system represents the goals and tasks of a generic conference 
paper management system. Goals of the system are identified and are decomposed into subgoals. 

The top-level goal, 0. Manage conference submissions, is decomposed into several "and" subgoals, which 
means that in order to achieve the top goal, the system must achieve all of its subgoals. These subgoals 
are then associated through precedence and trigger relations. The precedes arrow between goals 
indicates that the source of the arrow must be achieved before the destination can become active. The 

14 



Figure 3. Conference Management System Goal Model 

triggers arrow indicates that the domain-specific event in the source may trigger the goal in the 
destination. The occurs arrow from a goal to a domain-specific event indicates that while pursuing that 
goal, said event may occur. A goal that triggers another goal may trigger multiple instances of that goal. 

Leaf goals are goals that have no children. The leaf goals in this example consist of Collect papers. 
Distribute papers. Partition papers. Assign reviewers. Collect reviews. Make decision. Inform accepted, 
Inform declined, Collect finals, and Send to printer. For each of these leaf goals to be achieved, agents 
must play specific roles. The roles required to achieve the leaf goals are depicted in Figure 4. The role 
model gives seven roles as well as two outside actors. Each role contains a list of leaf goals that the role 
can achieve. For example, the Assigner role can achieve the Assign reviewers leaf goal. In GMoDS, roles 
only achieve leaf goals. The arrows between the roles indicate interaction between particular roles. For 
example, once the agent playing the Partitioner role has some partitions, it will need to hand off these 
partitions to the agent playing the Assigner role. OMACS allows an agent to play multiple roles 
simultaneously, as long as it has the capabilities required by the roles and it is allowed by the policies. 

2.3.2   Robotic Floor Cleaning Example 

Another example to illustrate the usefulness of the concept of guidance policies is the Cooperative 
Robotic Floor Cleaning Company Example (CRFCC), which was first presented by Robby et al. in (Robby, 
DeLoach, & Kolesnikov, 2006). In this example, a team of robotic agents cleans the floors of a building. 
The team has a map of the building as well as indications of whether a floor is tile or carpet. Each team 
member will have a certain set of capabilities (e.g. vacuum, mop, etc). These capabilities may become 
defective over time. In their analysis, Robby et al. showed how breaking up the capabilities affected a 
team's flexibility to overcome loss of capabilities. We have extended this example by giving the 
information that the vacuum cleaner's bag needs to be changed after vacuuming three rooms. Thus, we 
want to minimize the number of bag changes. For this, we introduce a guidance policy and show how it 
affects the performance of the organization. 

The goal model for the CRFCC system is fairly simple. As seen in Figure 5, the overall goal of the system 
(Goal 0) is to clean the floors. This goal is decomposed into three conjunctive subgoals: 1. Divide Area, 2. 
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Figure 4. Conference Management Role Model 

Pickup, and 3. Clean. The 3. Clean goal is decomposed into two disjunctive goals; 3.1 Sweep & Map and 
3.2 Vacuum. Depending on the floor type, only one subgoal must be achieved to accomplish the 3. Clean 
goal. If an area needs to be swept and mopped (i.e. it is tile), then goal 3.1 Sweep & Mop is decomposed 
into two conjunctive goals: 3.1.1 Sweep and 3.1.2 Mop. After an agent achieves the 1. Divide area goal, a 
certain number of 2. Pickup goals will become active (depending on how many pieces the area is divided 
into). After the 2. Pickup goals are completed, a certain number of 3. Clean goals become active, again 
depending on how many pieces the area was broken into. This then will activate goals for the tile areas 
(3.1.1 Sweep and 3.1.2 Mop) as well as goals for the carpeted areas (3.2 Vacuum). 

Figure 4 gives the role model for the CRFCC. In this role model, each leaf goal of the system is achieved 
by a specific role. The role model may be designed many different ways depending on the system's goal, 
agent, and capability models. Thus, depending on the agents and capabilities available, the system 
designer may choose different role models. For this paper, we will look at just one of these possible role 
models. For example, the Pickuper role requires the search, move and pickup capabilities. Thus, in order 
to play this role, an agent must possess all three capabilities. 

2.4   Guidance Policies 

Policies may restrict or proscribe behaviors of a system. Policies concerning agent assignments to roles 
have the effect of constraining the set of possible assignments. This can greatly reduce the search space 
when looking for the optimal assignment set (Zhong & DeLoach, 2006). 

Other policies can be used for verifying that a goal model meets certain criteria. This allows the system 
designer to state more easily the properties of the goal model that may be verified against candidate 
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goal models at design time. For example, one might want to ensure that our goal model in Figure 3 wil 

always trigger a Review Paper goal for each paper submitted. 

Table 2. Conference Management Role Model 

Role Name Req. Capabilities Goals Achieved 

Organizer org Divide Area 

Pickuper search, move, pickup Pickup area 

Sweeper move, sweep Sweep area 

Mopper move, mop Mop area 

Vacuummer move, vacuum Vacuum area 

Yet, other policies may restrict the way that roles can be played. For example, when an agent is moving 
down the sidewalk it always keeps to the right. These behavior policies also restrict how an agent 
interacts with its environment, which in turn means that they can restrict protocols and agent 
interactions. One such policy might be that an agent playing the Reviewer role must always give each 
review a unique number. These sort of policies rely heavily on domain-specific information. Thus it is 
important to have an ontology for relevant state and event information prior to designing policies 

(DiLeo, Jacobs, & DeLoach, 2002). 

2.4.1   Language for policy analysis 

To describe our policies, we use temporal equations with quantification similar to (Corbett, Dwyer, 
Hatcliff, & Robby, 2002). This may be converted into Linear Temporal Logic (LTL) (Manna & Pnueli, 1991) 
or Buchi automata (Buchi, 1960) for infinite system traces, or to something like Quantified Regular 
Expressions (Olender & Osterweil, 1990) for finite system traces. The equations consist of predicates 
over goals, roles, events, and assignments (recall that an assignment is the joining of an agent and role 
for the purpose of achieving a goal). The temporal operators we currently use are as follows: n(x). 
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meaning x holds always; 0(x), meaning x holds eventually; and x "Vy, meaning x holds until y holds.1 We 
use a mixture of state properties as well as events (Chaki, Clarke, Ouaknine, Sharygina, & Sinha, 2004) to 
obtain compact and readable policies. An example of one such policy equation is: 

Vay. Agents, L : a(sizeOf(ai.reviews) <5) (3) 

Equation 3 states that it should always be the case that each agent never review more than five papers. 
The L: indicates that this is a law policy. The property .reviews can be considered as part of the system's 
state information. This is domain-specific and allows a more compact representation of the property. 
This policy may be easily represented by a finite automaton as shown in Figure 6. 

V a:Agents, p : Papers 

a.reviews = 5 A A(a. REVIEWER, Review(p)) 

a.reviews < 5 v -, A(a. REVIEWER. Review(p)) 

Figure 6. No agent may review more than five papers 

The use of the A[) predicate in Figure 7 indicates an assignment of the Reviewer role to achieve the 
Review paper goal, which is parameterized on the paper p. This automaton depicts the policy in 
Equation 3, but in a manner for a model checker or some other policy enforcement mechanism to detect 
when violation occurs. The accepting state indicates that a violation has occurred. Normally, this 
automaton would be run alongside the system, either at design time with a model checker (Clarke Jr., 
Grumberg, & Peled, 1999), or at run-time with some policy enforcement mechanism (Ligatti, Bauer, & 
Walker, 2004). 

We would like to emphasize here that we do not expect the designer to specify their policies by hand 

editing LTL LTL is complex and designing policies in LTL would be very error prone and thus could 
potentially mislead the designer into a false sense of security or simply compose incorrect policies. There 
has been some work in facilitating the creation of properties in LTL (and other formalisms) for program 
analysis such as specification patterns (Dwyer, Avrunin, & Corbett, 1999). There has also been work done 
to help system property specification writers to graphically create properties (Smith, Avrunin, Clarke, & 
Osterweil, 2002) (backed by LTL) by manipulating automata and answering simple questions regarding 
elements of the property. 

2.4.2   Law Policies Defined 

The traditional notion of a policy is a rule that must always be followed. We refer to these policies as law 
policies. An example of a law policy with respect to our conference management example would be no 
agent may review more than five papers. This means that our system can never assign an agent to the 
Reviewer role more than five times. A law policy can be defined as: 

^e only reason about bounded liveness properties because we only consider successful traces. 
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L : Conditions —> Property (4) 

Conditions are predicates over state properties and events, which, when held true, imply that the 
Property holds true. The Conditions portion of the policy may be omitted if the Property portion should 

hold in all conditions, as in Equation 3. 

Intuitively, for the example above, no trace in the system may contain a sub-trace in which an agent is 
assigned to the Reviewer role more than five times. This will limit the number of legal traces in the 
system. In general, law policies reduce the number of legal traces for a multiagent system. The policy to 
limit the number of reviews an agent can perform is helpful in that it will ensure that our system does 
not overburden any agent with too many papers to review. This policy as a pure law policy, however, 
could lead to trouble in that the system may no longer be able to achieve its goal. Imagine that more 
papers than expected are submitted. If there are not sufficient agents to spread the load, the system will 
fail since it is cannot assign more than five papers to any agent. This is a common problem with using 
only law policies. They limit the flexibility of the system, which we define as how well the system can 

adapt to changes (Robby et al., 2006). 

2.4.3   Guidance Policies Defined 

While the policy in Equation 3 is a seemingly useful policy, it reduces flexibility. To overcome this 
problem, we have defined another, weaker type of policy called guidance policies. Take for example the 

policy used above, but as a guidance policy: 

Va,: Agents, g: a(sizeOf(ai.reviews) <5) (5) 

This is the same as the policy as in Equation 3 except for the g-., which indicates that it is a guidance 
policy. In essence, the formalization for guidance and law policies are the same, the difference is the 
intention of the system designer. Law policies should be used when the designer wants to make sure 
that some property is always true (e.g. for safety or security), while guidance policies should be used 
when the designer simply wants to guide the system. This guidance policy limits our agents to reviewing 
no more than five papers, when possible. Now, the system can still be successful when it gets more 
submissions than expected since it can assign more than five papers to an agent. When there are 

sufficient agents, the policy still limits each agent to five or fewer reviews. 

Guidance policies more closely emulate how policies are implemented in human societies. They also 
provide a clearer and simpler construct for more easily and accurately describing the design of a 
multiagent organization. In contrast to policy resolution complexity of detecting and resolving policy 
contradictions in (Bradshaw etal., 2003), our methodology of using guidance policies present an 
incremental approach to policy resolution. That is, the system will still work under conflicting policies; its 

behaviors are amenable to analysis, thus allowing iterative policy refinement. 

In the definition of guidance policies, we have not specified how the system should choose which 
guidance policy to violate in a given situation. We propose a partial ordering of guidance policies to allow 
the system designer to set precedence relationships between guidance policies. We arrange the 
guidance policies as a lattice, such that a policy that is a parent of another policy in the lattice, is 
more-important-than its children. By analyzing a system trace, one can determine a set of policies that 
were violated during that trace. This set of violations may be computed by examining the policies and 
checking for matches against the trace. When there are two traces that violate policies with a common 
ancestor, and one (and only one) of the traces violate the common ancestor policy, we mark the trace 
violating that common ancestor policy as illegal. Intuitively, this trace is illegal because the system could 
have violated a less important policy. Thus, if the highest policy node violated in each of the two traces is 
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an ancestor of every node violated in both traces, and that node is not violated in both traces, then we 
know the trace violating that node is illegal and should not have happened. 

Table 3 . Conference Management Policies 

Node Definition 

P, No agent should review more than 5 papers. 

P: PC Chair should not review papers. 

Ps Each paper should receive at least 3 reviews. 

P4 An agent should not review a paper from 
someone whom they wrote a paper with. 

Take, for example, the four policies in the Table 3. Let these policies be arranged in the lattice shown in 
Figure 7. The lattice in Figure 7 means that policy Pl is more important than P2 and Ph and /N is more 
important than P4. Thus, if there is any trace that violates any guidance policies other than Py (and does 
not violate a law policy), it should be chosen over one that violates P,. 

Figure 7. Partial orders of guidance policies (a) Possible Partial order of Guidance 
Policies (b) Another possible ordering 

When a system cannot achieve its goals without violating policies, it may violate guidance policies. There 
may be traces that are still illegal, though, depending on the ordering between policies. For every pair of 
traces, if the least upper bound of the policies violated in both traces, let us call this policy violation (p, is 

in one (and only one) of the traces, the trace with (pis illegal. For example, consider the ordering in Figure 
7 let trace t, violate Pi and Pi, while trace r? violates Pj and P3. Round nodes represent policies violated 
in tj, box nodes represent policies violated in /J, and boxes with rounded corners represent policies 
violated in both f, and ti. Since Pi is the least upper bound of Pi, Pi. and P3 and since Pi is not in ti, t] is 
illegal. 

As shown in Figure 7, the policies may be ordered in such a way that the policy violations of two traces 
do not have a least upper bound. If there is no least upper bound, <P, such that (Pis in one of the traces, 

the two traces cannot be compared and thus both traces are legal. The reason they cannot be compared 
is that we have no information about which policies are more important. Thus, either option is legal. It is 
important to see here that all the guidance policies do not need to be ordered into a single lattice. The 
system designer could create several unrelated latfces. These lattices then can be iteratively refined by 
observing the system behaviors or by looking at metrics generated for a certain policy set and ordering 
(e.g., (Robby et al., 2006)). This allows the system designer to influence the behavior of the system by 
making logical choices as to what paths are considered better. Using the lattice in Figure 7, we may even 



have the situation where Pi is not violated by either trace. In this case, the violation sets cannot be 
compared, and thus, both traces are legal. In situations such as these, the system designer may want to 

impose more ordering on the policies. 

Intuitively, guidance policies constrain the system such that at any given state, transitions that will not 
violate a guidance policy are always chosen over transitions that violate a guidance policy. If guidance 
policy violation cannot be avoided, a partial ordering of guidance policies is used to choose which 

policies to violate. 

2.4.4   Effectiveness of Guidance Policies 

2.4.4.1 CRFCC 

Using our CRFCC example and a modified simulator from (Robby et al., 2006), we collected results 
running simulations with the guidance policy: no agent should vacuum more than three rooms. We 
contrast this with the law policy: no agent may vacuum more than three rooms. The guidance policy is 

presented formally in Equation 6. 

Vai: Agents, g: u(vacummedRooms <3) (6) 

For this experiment, we used five agents each having the following capabilities: a/, org, search, and 
move; a?, search, move, and vacuum; aj, vacuum and sweep; a^, sweep and mop; and a^, org and mop. 
These capabilities restrict the roles our simulator can assign to particular agents. For example, the 
Organizer role may only be played by agent a/ or agent aj, since those are the only agents with the org 
capability. In the simulation we randomly choose capabilities to fail based on a probability given by the 

capability failure rate. 

For each experiment, the result of 1000 runs at each capability failure rate was averaged. At each 
simulation step, a goal being played by an agent is randomly achieved. Using the capability failure rate, 
at each step, a random capability from a random agent may be selected to fail. Once a capability fails it 

cannot be repaired. 

Figure 8 shows that while the system success rate decreases when we enforce the law policy, it does not, 
however, decrease when we enforce the guidance policy. Figure 9 shows the total number of times the 
system assigned vacuuming to an agent who already vacuumed at least 3 rooms for 1000 runs of the 
simulation at each failure rate. With no policy, it can be seen that the system will in fact assign an agent 
to vacuum more than 3 rooms quite often. With the guidance policy, however, the extra vacuum 
assignments (>3) stay minimal. The violations of the guidance policy increase as the system must adapt 
to an increasing failure of capabilities until it reaches a peak. At the peak, increased violations do not aid 
in goal achievement and eventually the system cannot succeed even without the policy. Thus, the 
system designer may now wish to purchase equipment with a lower rate of failure, or add more 
redundancy to the system to compensate. The system designer may also evaluate the graph and 
determine whether the cost of the maximum number of violations exceeds the maximum cost he is 

willing to incur, and if not, make appropriate adjustments. 

2.4.4.2 Conference Management System 

We also simulated the conference management system described in Section 2.3.1. We held the number 
of agents constant, while increasing the number of papers submitted to the conference. The system was 
constructed with a total of 13 agents, 1 PC Member agent, 1 Database agent, 1 PC Chair agent, and 10 
Reviewer agents. The simulation randomly makes goals available to achieve, while still following the 
constraints imposed by GMoDS. Roles that achieve the goal are chosen at random as well as agents that 
can play the given role. The policies are given priority using the more-important-than relation as 
depicted in Figure 7. 
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Figure 9 . The extra vacuum assignments given capability failure 

Figure 10 shows a plot of how many times a guidance policy is violated versus the number of papers 
submitted for review. For each set of paper submissions (from 1 to 100) we ran the simulation 1000 
times and then took the average of the 1000 runs to determine the average number of violations. In all 
the runs the system succeeded in achieving the top-level goal. 

As seen by the graph in Figure 10, no policies are violated until around 17 papers (this number is 
explained below). The two least important policies (Pj and Pj) are violated right away. The violation of 
Pi, however, levels off since it is interacting with P,. The violations of P3 is seen to grow at a much 
greater rate since it is the least important policy. 
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We then changed all the guidance policies to law policies and re-ran the simulation. For 17 or more 

submissions, the system always failed to achieve the top-level goal. This makes sense because we have 
only 10 Reviewer agents and we have the policies: the PC Chair should not review papers and no agent 

should review more than 5 papers. This means the system can only produce 5x10=50 reviews. But, since 

we have the policy that each paper should have at least 3 reviews, 17 submissions would need 17x3=51 
reviews. For 16 or fewer papers submitted, the law policies perform identical to the guidance policies. 
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Figure 10. Violations of the guidance policies as the number of papers to review 
increases 

2.4.4.3   Common Results 

As the experimental results in Figure 8 show, guidance policies do not decrease the flexibility of a system 

to adapt to a changing environment, while law policies do decrease the flexibility of a system to adapt to 
a changing environment. Guidance policies, however, do help guide the system and improve 
performance as shown in Figure 9 and Figure 10. The partial ordering using the more-important-than 
relation helps a system designer put priorities on what policies they consider to be more important and 
helps the system decide which policies to violate in a manner consistent with the designer's intentions. 

2.4.5    Conclusions 

Policies have proven to be useful in the development of multiagent systems. However, if implemented 
inflexibly, situations such as described in (Peha, Hinchey, & Sterritt, 2006) will occur (a policy caused a 
spacecraft to crash into an asteroid). Guidance policies allow a system designer to guide the system 
while giving it a chance to adapt to new situations. 

With the introduction of guidance policies, policies are an even better mechanism for describing desired 
properties and behaviors of a system. It is our belief that guidance policies more closely capture how 
policies work in human organizations. Guidance policies allow for more flexibility than law policies in that 
they may be violated under certain circumstances. In this paper, we demonstrated a technique to 
resolve conflicts when faced with the choice of which guidance policies to violate. Guidance policies, 
since they may be violated, can have a partial ordering. That is, one policy may be considered more 
important than another. In this manner, we allow the system to make better choices on which policies to 
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violate. Traditional policies may be viewed as law policies, since they must never be violated. Law 
policies are still useful when the system designer never wants a policy to be violated-regardless of 
system success. Such policies might concern security or human safety. 

Policies may be applied in an OMACS system by constraining assignments of agents to roles, the 
structure of the goal model for the organization, or how the agent may play a particular role. Through 
the use of OMACS, the metrics described in (Robby et al., 2006), and the policy formalisms presented 
here, we are able to provide an environment in which a system designer may formally evaluate a 

candidate design, as well as evaluate the impact of changes to that design without deploying or even 
completely developing the system. 

Policies can dramatically improve run-time of reorganization algorithms in OMACS as shown in (Zhong & 
DeLoach, 2006). Guidance policies can be a way to achieve this run-time improvement without 
sacrificing system flexibility. The greater the flexibility, the better the chance that the system will be able 
to achieve its goals. 

2.5   Learning to Self-Tune Multiagent Systems via Guidance Policies 

Learning from mistakes is one of the most common learning methods in human society. Learning from 
mistakes allows one to improve performance over time, this is commonly referred to as experience. 
Experience can allow proper tuning and configuration of a complex multiagent system. In this paper, we 
implement this tuning and configuration through the mechanism of organizational guidance policies. 
Guidance policies are policies that have been defined to constrain the system, without limiting the 
system's flexibility (Harmon, DeLoach, & Robby, 2007). These policies may be suspended if the system 
cannot achieve its goal with the policies in place. These policies, however, still limit the system and can 
be used to guide the system while still allowing the system to adapt to changes in the environment. 

Applying learning in multiagent systems is not new. Many authors have explored applying various 
learning techniques in a multiagent context (Jong & Stone, 2007, Nair, Tambe, Yokoo, Pynadath, & 
Marsella, 2003, Panait & Luke, 2005). Most of these learning applications, however, have been limited to 
improving an agent's performance at some task, but not the overall organization's performance. Some 
consider the overall team performance, but not in the structure of modern organization-based 
multiagent systems. 

There is good reason past literature has not explored much polices over the entire organization. 
Reasoning over an entire multiagent system is a momentous task (Bernstein, Givan, Immerman, & 
Zilberstein, 2002). Care must be taken to ensure that all learned policies do not negatively impact the 
organization, for example, putting the organization in a situation where it is impossible for it to complete 
its goal. Interactions between policies can be subtle and many hidden interactions may exist. Our use of 
guidance policies (Harmon et al., 2007) helps mitigate these risks substantially, thus allowing the system 
to experiment with different policies without much risk to the viability of the system. 

2.5.1   Self-Tuning Mechanism 

An overview of how the learning takes place in our systems is given in Figure 11. The system first checks 
the goals that are available to be worked on, these goals come from GMoDS using the rules of 
precedence and trigger notations and support the overall goal of the system. Assignments of goals and 
the roles that can achieve them are made to the agents. The agents then indicate achievement failure or 
success. If an agent fails to achieve a goal, policies are learned over the current state knowledge. This 
cycles until either the system cannot achieve the main goal (system failure), or the system achieves the 
main goal (system success). Agents may fail to achieve a goal due to some aspect of the goal or due to 

some changes in the environment. The failure may be intermittent and random. 
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Figure 11. Learning Integration 

The aim of our learning algorithm is to discover new guidance policies in order to avoid 'bad states'. Thus 
we will be generating only negative authorization policies. While the precise definition of a bad state is 
domain specific, we assume that the set of bad states is a possibly empty subset of all the states in the 
system. The remaining states are good states. Thus we have S = SB u SG and SB n SG = 0 where S 
is the set of all states in the system, SG is the set of all good states in the system, and SB is the set of 
all bad states in the system. Generally, bad states are states of the system that should be avoided. We 
use a scoring mechanism to determine which states are considered bad. The score of a state is domain 

specific, however, for our experiments we used 

score{SO = 
l + Fi 

where F; is the number of agent goal achievement failures thus far in state Sj. 

To actually generalize and not simply memorize, our learning algorithm should derive policies that apply 
to more than one state through generalization. Thus, the learner attempts to discover the actual cause 
for the bad state so that it may avoid the cause and not simply avoid a single bad state. 
Our learning algorithm takes a Q-Learning (Watkins, 1989) approach. The learner keeps track of both bad 

and good actions (transitions) given a state. 

Bad-actions. Bad actions of a state are defined as actions that result in a new state that has a score 
lower than the state in which the action took place. 

Good-actions. Good actions of a state are defined as actions that result in a new state that has a score 
equal to or greater than the score of the state in which the action took place. 

The learner can then generate a set of policies that will avoid the bad states (by avoiding the bad action 
leading to this state). In the context of the experiments presented in this paper, the actions considered 
are agent goal assignments as defined in Section 1.3.3.1. 

Figure 12 shows an example state transition. In this example, state S; is transitioning to state 5i+1 via 
assignment T. In state Sj+1 a failure occurs, thus F'=F+1. The state is then given a score. 

Generalization of the policies is done over the state. For each action leading to a bad state, the algorithm 
first checks to see if we already have a policy covering this action and the pre-state (state leading to the 
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bad state), if so, nothing needs to be done for this bad action, otherwise we generate a policy for it. The 
algorithm generalizes the state by considering matchings. 

Matching. A matching is a binary relation between a sub-state and a state. Bk < Sj, means that Bk 

matches 5;. Intuitively, a matching occurs between a state and sub-state when the sub-state represents 
some part of the state. Figure 13 depicts the sub-state matching relationship. Each letter represents a 
state quantum. 

T = <Gi(x), % Ak> 

Figure 12. State and Action Transition 

State Quantum. A sfote quantum is the smallest divisible (in terms of the algorithm) unit within a state. 

In the unordered state, a matching sub-state may consist of any subset of state quanta. In the ordered 
state, the order of the quanta must be preserved in the sub-state. The empty sub-state is said to match 
all states. If a state is a set of unordered quanta, S = {s1,S2,...}, then a sub-state, Bk, is said to be a 
matching for S; iff Bk £ Sj. In practice, since the number of ordered states for a given system is far 
greater than the number of unordered states for the same system, we tend to prefer using unordered 
states over ordered states. Using ordered states would give the learner more information, but in the 
experiments we conducted, that extra information was not worth the added state space. State space 
explosion with the ordered states was not offset by performance gains over the unordered version. In 
our experiments, we used agent role-goal assignment and achievement history as our states. The quanta 
are the actual agent assignment tuples. A sub-state is said to match a state when the agent assignment 
tuples in the achievement and assignment sets of the sub-state are subsets of the corresponding sets of 

the state. Intuitively, sub-states may be seen as generalizations of states. 

Matching 
Substate 

Ordered State Matching 
Substate 

Unordered State 

Figure 13. Ordered and Unordered states and their matching sub-states 

The operation of the algorithm is independent of the state score calculation and the sub-state 
generation. For every bad action, T, given a state, the algorithm starting with the empty sub-state, which 

matches all states, computes a score using Equation 7. If this score is lower than a threshold, the 
algorithm asks the state for the set of smallest sub-states containing a specific sub-state (initially the 
empty sub-state). Each one of these sub-state-action pairs, (Bk,T), are given a score, score{Bk,T)= 

I - (size(matchc) / (size(statesG) + size(statesB) + size(matchB))) (7) 
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The variables in Equation 7 are as follows: statesc is the entire set of good states given the transition T 
(gotten to by taking transition 7); statesn is the entire set of bad states given the transition T (gotten to by 
taking transition T); matchc is, given the transition, the set of good states that the sub-state matches (a 
subset of statesG); and matchB is, given the transition T, the set of bad states that the sub-state matches 
(a subset of statesB)- It follows that the score is bounded as follows: 

0 <score(Bk,T) < 1 (8) 

It can easily be seen that when the sub-state matches all good states, and we have not encountered any 
bad states size{stateSG)=size(matchG) and size(statesB)=size(matchB)=0, thus score(Bk,T)=0. Conversely, 

if the sub-state does not match any good states, size(matchG)=0, thus score(Bk,T)=]. Each sub-state is 
scored with Equation 7. The sub-state with the highest score is chosen. If this score is less than a 
threshold constant, the process is repeated but the sub-state that is given to the state to generate new 
sub-states is this maximum score sub-state. Thus, we now build upon this sub-state and make it more 

specific. 

Intuitively we start with the most general policy and then make it as specific as necessary (taking a 
greedy approach) so that we exclude 'enough' good states. The closer the threshold constant is to 1, the 
lower the possibility of the learned policies matching good states. The closer the threshold constant is to 
0, the higher the possibility that the learned policies will match good states. For our experiments, we 
used a threshold constant of 0.6. This proved to perform sufficiently well for us since we dealt with 
intermittent failures. Pseudo-code for the policy generation is given Figure 14. 

for all Oction, preStateSet> in badTGivenS do 
for all preState in preStateSet} 

if !isAlreadyMatched(action, preState) then 
maxSubstate = emptySubstate 
maxScore = score(maxSubstate, action) 
done = false 
while maxscore < THRHLD A !done do 

substateSet = getSubstates(preState, maxSubstate) 
if substateSet = 0 then 

done = true 
end if 
maxScore = -1 
for all substate in substateSet do 

score = score(substate,action) 
if score > maxScore then 

maxScore = score 
maxSubstate = substate 

end if 
end for 

end while 
matches = matches U <action, maxSubstate> 
policies = policies U generatePolicy(action, maxSubstate) 

end if 
end for 

end for 

Figure 14. Pseudo-code for generating the policies from the state, action pair sets 

Another approach that we tested was to avoid the bad states, that is, ignoring transitions, simply 
construct policies that avoid generalizations (sub-states) of the bad states themselves. This alone can 
lead to problems. In our experiments, we found cases in which the system would live-lock. Since the 

27 



learner never kept track of the event that lead to the bad state, it was possible that the learner might 
discover policies that forbid every agent but one from trying to achieve some goal. However, if this one 
agent failed with 100% probability, the system might simply reinforce that the new bad state was caused 
by the older decisions (sub-state) and would keep trying to assign the goal to the failing agent. The 
action-sub-state learner gets around this because the policies are developed for the action, if an action 
keeps leading to a bad state, there will be a policy discovered that forbids it. In the case where there are 
policies forbidding every agent from trying to achieve a goal, since we are using guidance policies, the 
policies will be suspended and an agent will be chosen. Eventually an agent who can achieve the goal will 
be chosen, and the learner will learn that that agent was not the cause of the previous failures. Avoiding 
live-lock is also the reason we regenerate policies after every failure. 

2.5.2   Effectiveness of Self Tuning with Guidance Policies 

To test our algorithm, we simulated three different systems: (1) a conference management system, (2) 
an information system, and (3) an improvised explosive device (IED) detection cooperative robotic 
system. These systems are a sampling across the usual multiagent system deployments: the conference 
management system, a human agent system; the information system, a software agent system; and the 
IED detection system, a robotic agent system. Each of these systems exhibits special tuning requirements 
given their different agent characteristics. 

We simulated these systems by randomly choosing an active goal to achieve and then randomly 
choosing an agent capable of playing a role that can achieve the goal while following all current policies 
in the system. Active goals are simply goals in our goal model that GMoDS deems can be worked on. A 
goal may become active when triggered, or when precedence is resolved. In the case of learning, the 
learning code receives all events of the system. After every agent goal achievement failure, the system 
regenerates its learned guidance policies using all of the state, transition, and score information it has 
accumulated up to that point. 

2.5.2.1   Conference Management System 

in the Conference Management System example, we modified the agents such that some of them fail to 
achieve their goal under certain conditions. In this system we have three types of Reviewer agents: one 
that never fails when given an assignment, another that fails 70% of the time after completing two 
reviews (Limit Reviewer), and the last type, that fails 70% of the time when trying to review certain types 
of papers (Specialized Reviewer). We focused on failures of agents to achieve the Review Paper goal. We 
created the Reviewer types described above and observed the system performance. In this simulation, 
we varied the number of papers submitted for review to trigger the failure states. For our experiment, 
states contain the history of assignments and number of failures thus far. Actions are the assignment 
and failure events. Only leaf goals are used in assignments. Non-leaf goals are decomposed into the leaf 
goals. In this experiment, we are concerned with the Reviewer role. Several different agent types are 
capable of playing this role, although they clearly behave differently. Each role may achieve specific goals 
as shown in the Figure 4. We ran the system with no learning and recorded the number of failures. We 

then ran the system with the learning engaged and recorded the number of failures. Finally, we ran the 
system with hand-coded policies that we thought should be optimal and recorded the number of 
failures. 

The policies generated by the learner consist of forbidding an action given a state matching. For 
example, the learner discovered the policy: given the empty sub-state (meaning in any state), forbid the 

agent assignment (Specialized Reviewer, PC Reviewer, Review papers ( Theory)). Thus this policy applies 
to all states of the system and tries to avoid assigning theory papers to the SpecializedReviewer. Another 

policy discovered by the learner is given the sub-state Assigned:{Limit Reviewer, PC Reviewer, Review 



papers ( Theory)), forbid the action {Limit Reviewer, PC Reviewer, Review papers ( Theory)). The learner 
must learn all permutations on the abstracted goal parameter. It is interesting here to note that the 

learner tries to forbid the LimitReviewer after just one successful assignment to it. This has the added 
benefit that the assignment fails as late as possible, thus the system or environment could have 
improved before a failure occurs. The number of policies generated is relatively small, staying less than 

10 in all runs. 

Figure 15 . Limit Reviewer policy preventing theory papers from being assigned 

Figure 15 gives a graphical depiction of how a learned policy relates and is applied to the system states. 

From a state containing the sub-state, Assignecl:{Limit Reviewer, PC Reviewer, Review papers ( Theory}), 

the assignment action {Limit Reviewer, PC Reviewer, Review papers (Theory)) is forbidden. 

{<Limit Reviewer, PC Reviewer. 
Review papers(Theory)>,...} 

<Rcviewer, PC Reviewer, 
Review papers(Theory)> 

Figure 15 . Limit Reviewer policy preventing theory papers from being assigned 

The agent type, role type, goal type, and a parameter abstraction is given. The parameter abstraction is 
currently domain specific, although a separate learner may categorize the parameters thus creating the 

abstraction function without the need for a domain expert. 

Figure 16 compares the self-tuning, learning, system to one where this learning does not occur. We also 
compared the learning to a system, for which, a policy expert with knowledge of the agent goal 
achievement failure, hand coded policies he thought would tune the system. As can be seen, our 
learning algorithm does no worse than the hand-coded policies, and does vastly better than a non-tuned 
system. The learning tuning adapts the system quickly to its deployed environment—without requiring a 
policy expert to analyze the specific deployment environment and handcraft policies to tune for said 

environment. 

2.5.2.2    Information System 

Another multiagent system we tested was a simple Information System. Peer-to-peer information 
gathering and retrieval systems have been constructed using multiagent systems, e.g. Remote Assistant 
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for Information Sharing (RAIS) (Mari, Poggi, Tomaiuolo, & Turci, 2006). In our information system we had 
four types of information retrieval agents: CacheyAgent, this agent fails with a 30% probability the first 
time it is asked for a certain piece of information, subsequent requests for info it has retrieved previously 
always succeeds; LocalAgent, this agent fails 10096 of the time when asked for remote information, 
otherwise it succeeds with a 100% probability; PickyLocalAgent, this agent fails 100% of the time on any 
request except for on particular piece of local data; and Remote Agent, this agent fails 100% of the time 
on all data except for remote data. 

The leaf-goals of our system are as follows: 1.1 Monitor Information Search Requests, 1.2.1 Perform 
Local Search, 1.2.2 Perform Remote Search, 1.2.3 Present Results, 2.1 Monitor Information Requests, 2.2 
Retrieve Information, 3.1 Monitor for New Information, and 3.2 Incorporate new Information into Index. 
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Figure 16. Agent goal achievement failures with self-tuning (learning), hand-tuning 
(optimal), and no tuning 

The role-goal relation is shown in Table 4. CacheyAgent is capable of playing roles Local Information 
Retriever and Remote Information Retriever. LocalAgent and PickyLocalAgent are capable of playing 
Local Searcher and Local Information Retriever roles. RemoteAgent is capable of playing the Remote 
Searcher and the Remote Information Retriever roles. 

The system quickly learned policies restricting the PickyLocalAgent from various information retrieval 
assignments. These policies were learned that they apply in all states. The LocalAgent also became 
restricted from being assigned any goal with any of the various remote information regardless of the 
system state. The policies concerning assignments to the RemoteAgent were similar to the LocalAgent. 

The Cachey Agent, however, was restricted by various policies, usually of the form (CacheyAgent, 

Remote Information Retriever, Retrieve Information (remote info 2)) agent goal assignment is forbidden 

given the state assignments contain (CacheyAgent, Local Information Retriever, Retrieve Information ( 
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local info 1 )). The learner did not have a mechanism for generating a negation policy. For example, do 
not allow the assignment if the state does not match the given sub-state. This could be a future 
enhancement to the policy generation of the learning. Although the learner did not have this capability, 
it still managed to keep the Cachey Agent's failures low, and the introduction of this type of agent did 

not confuse the learner with regards to the type of failure of the other agents. 

Table 4 . IS Role Goal Relation 

Role Name Goals Achieved 

GUI 1.1, 1.2.3, 2.1 

Local Searcher 1.2.1 

Remote Searcher 1.2.2 

Information Monitor 3.1 

Indexer 3.2 

Local Information Retriever 2.2 

Remote Information Retriever 2.2 

Figure 17 shows the agent achievement failures for a non-tuned system. An expert may analyze these 

failures and craft policies to guide the system to avoid the failures, but this would be an error-prone and 
tedious task. In fact, by the time a solution is proposed, the problem may well have changed. 
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Figure 17 . Agent failures with no self-tuning 
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Our self-tuning learning achieved the results given in Figure 18. The system was able to self-tune and 
adapt itself to an environment that contained multiple unique causes of failure. The adaptation 
happened quickly enough to greatly benefit the system. 

2.5.2.3   IED Detection System 

The use of multiagent systems in robotic teams is a natural application of multiagent systems. 
Unfortunately, robots and their physical environment contain more variability than purely 
software-based multiagent systems. System designers may not be able to plan for all this potential 
variability when designing their system. Capabilities of robots may vary with their physical environment. 
For example, a robot needing line-of-sight for communication may go out of communication range if 
they move behind a physical structure in their environment. Other robots may find that they are not able 
to diffuse certain types of lEDs, perhaps because the lEDs are too big for the agent's grippers. Certainly, 
if the system designer could think of and design for all possible environmental variations, their system 
would be able to perform efficiently in all environments. In practice, however, this is not practical. Thus, 
the system should be able to automatically learn and adapt to environmental variations on its own. 
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Figure 18 . Agent failures using action and sub-state learning for self-tuning 

The IED detection system we used (MACR Lab, 2009) consists of agents to Patrol an area. Identify lEDs, 
and Defuse lEDs. Various agents are capable of playing these roles. The Patrol role may be played by our 
LargePatroller or our SmallPatroller agents. The Defuser role may be played by our LargeGripper or 
SmallGripper agents. lEDs may be found while an agent is playing the Patrol role, this event will trigger 
an Identify goal, which in turn could trigger a Defuse goal. The Defuse goal is parametrized on the type of 
IED identified (large or small). The IED patrol area is first broken into four parts as shown in Figure 19. 
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A B 

C D 

Figure 19. IED Search Area for various Pal rollers 

For the first experiment, we made the ShortPatroller fail on area D with a 40% probability for the first 10 
assignments made to it. After the first 10 assignments to it, the ShortPatroller faWs with a 40% probability 
on area A and no longer fails on area D. The LargePatroller agent always fails on area B with a 20% 
probability. The SmallGripper fails with a 100% probability on diffusing large lEDs. 

Without learning, in the first 1000 runs, the 5mo//Gr/pper failed a total of 14879 times, the ShortPatroller 
failed 409 times, and the LargePatroller failed 107 times. With learning, for the first 1000 runs, the 

SmallGripper failed 1 time, the ShortPatroller failed 4 times, and the LargePatroller failed 1 time. 
Subsequent runs using the accumulated knowledge displayed no failures by any agents. 

In the second experiment, we left the agents the same except for the LargePatroller. The LargePatroller 
agent now fails on area D with a 20% probability. This overlaps with the failure area of the SmallGripper 
agent. 

In this scenario, without learning, in the first 1000 runs the SmallGripper failed 15172 times, the 
ShortPatroller faWed 434 times, and the LargePatroller failed 133 times. With learning, for the first 1000 
runs, the SmallGripper failed 1 time, the ShortPatroller failed 3 times, and the LargePatroller failed 12 
times. In a subsequent 1000 run, using the accumulated knowledge, the learning fell into a 
sub-optimum, the SmallGripper failed 0 times, but the ShortPatroller failed 2 times, and the 
LargePatroller failed 102 times. We hypothesize that this is due to the fact that we have the overlapping 
failing area as well as no partial ordering on learned guidance policies. Thus when the policies must be 
suspended due to conflicting, or because the system cannot progress with the policies, all the learned 
policies are suspended at once, creating the situation similar to having no learning. 

2.5.2.4   Common Results 

In all of our experiments, our self-tuning mechanism was able to quickly avoid multiple failure states that 
had multiple independent sources. The performance of the systems increased as the system tuned to its 
environment. The number of polices discovered was kept small which can be important when 
considering policies at run-time, since more policies can mean more p -ocessing time and effort. 

In ail of the scenarios, we had multiple independent failure vectors. _he learning was able to overcome 
this. The IED simulation explored an evolving failure situation where the cause of the failure changed 
over time. The information system also had a unique type of failure with the CacheyAgent. This agent 
cached results of previous queries and thus would always succeed once it had successfully retrieved a 
particular piece of information; otherwise it had a certain probability of failure. This failure was handled 
by the algorithm, but due to the nature of the policies generated, it was not handled optimally and in a 
general sense. 
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2.5.3 Related Work 

There has been much work in independent agent learning outside of the organizational framework. 
Much of this learning is on the individual agent level, with the hope that the over-all system performance 
will improve. 

Bulka et al. (Bulka etal., 2007) devised a method allowing agents to learn team formation policies for 
individual agents using a Q-Learning and classifier approach. They showed notable improvement in the 
performance of their system. While their approach works well for open multiagent systems, it does not 
leverage the properties of an organization-based multiagent approach. Abdallah and Lesser (Abdallah & 
Lesser, 2007) developed a similar method to Bulka's except they were concerned with migrating the 
learned information to a changed network topology as well as using the learned information to optimize 
the network topology of the current agent system. 

Kok and Vlassis (Kok & Viassis, 2006) used coordination graphs along with a Q-Learning approach to learn 
to maximize overall agent coordination performance. Again, this work does not leverage the 
organizational approach to multiagent systems. Every agent is equal in society and only varies with 
respect to capabilities possessed. In human organizations, structures are built in which actors have roles 
that they can fill. 

Other work has been done at the agent behavior level (e.g., Peshkin, Kim, Meuleau, & Kaelbling, 2001). 
As an agent tries to achieve a goal, it may affect the performance of its teammates. Policies are 
sometimes used to restrict the agent's behavior while working on a goal. 

Chiang et al. (Chiang et al., 2007) have done some work on automatic learning of policies for mobile ad 
hoc networks. Their learning, however, was an offline approach using simulation to generate specific 
policies from general 'objectives' and possible configurations. Our research leverages the organizational 
framework to generate policies online that affect the system through the processes of the organization 
(i.e role-goal assignments). 

2.5.4 Conclusions 

Multiagent systems can become quite complex and may be deployed in environments not anticipated by 
the system designer. Furthermore, the system designer may not have the resources to spend on 
hand-tuning the system for a particular deployment. With these issues in mind, we have developed a 
method to create self-tuning multiagent system using guidance policies. 

Using a variation of Q-Learning, we have developed an algorithm that allows the system to discover 
policies that will help maximize its performance over time and in varying environments. The use of 
guidance policies helps remove some of the traditional problems with using machine learning at the 
organization level in multiagent systems. If the learner creates bad policies, they should not prevent the 
system from achieving its goal (although they may degrade the quality or timeliness of the achievement). 
In this way, our approach is 'safer' and thus we can use a simpler learner. 

In the experiments we conducted, the system was able to adapt to multiple agent goal achievement 
failures. It was able to cope with randomized and history-sensitive failures. The learner was able to 
discover guidance policies that, in every case, caused our systems to perform better on the order of a 
magnitude when faced with these failures. 

Since we are taking the approach of always trying to avoid bad states, there is the question of whether 
our approach will possibly drive the system away from the optimal state in certain diabolical cases. The 
argument is that in order to get to the best state, we must pass through some bad states. To address 
this, we need to look at what is being considered as a bad state and if it is possible for there to be a 
high-scored state that can only be reached through a bad state. In the experiments we have performed, 
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bad states corresponded to agent goal achievement failures. Using agent goal achievement failures as 
the scoring method of our states, it is possible that you must pass through a bad state in order to get to 
an end state with the highest score. But, since the score is inversely proportional to agent goal failures, 
we will have to go through a bad state in any case. We argue that since our score is monotonic, our 
algorithm should be able to drive toward the best-scored state even in the diabolical case that you must 
go through a bad state. This would require that we order our learned guidance policies using the 
more-important-than relation by score. 

The usage of guidance policies allow for retention of useful preferences and automatic reaction to 
changes in the environment. For example, there could be an agent that is very unreliable, thus the 
system may learn a policy to not make assignments to that agent, however, the system may have no 
alternatives and thus must use this agent. "We don't like it, but we deal with the reality."-that is until 
another agent that can do the job joins the system. 

2.6   Using Guidance Policies to Achieve Abstract Qualities 

"Good, fast, or cheap, pick two." What drives designers to make decisions on how to architect a system? 
The stakeholder has certain abstract qualities in mind: efficiency, quality, reliability, and so forth. These 
qualities are desired by nearly every stakeholder, but how do we make sure our system is guided by 
these qualities? What happens when the system cannot provide all the qualities all the time? There 
will be a trade-off; some speed will be sacrificed for quality, or some quality for speed. This research 
describes how to analyze a design, automatically generate formal specifications in the form of policies, 
and put trade-offs into the open, allowing the decisions about what is more important to be made at 
design-time and not during implementation, which is now often the case. 

2.6.1 Introduction 

Organization-based multiagent systems engineering has been proposed as a way to design complex 
adaptable systems (Bernon etal., 2005, DeLoach et al., 2007). Agents interact and can be given tasks 
depending on their individual capabilities. The system designer is faced with the task of designing a 
system to not only meet function requirements, but also non-functional requirements. The system 
designer needs tools to help them generate specification and evaluate design decisions early in the 
design process. Conflicts within the non-functional requirements should be uncovered and, if necessary, 
the stakeholders' may then be consulted to help resolve those conflicts. The approach we are taking is to 
first generate a set of system traces using the models generated at design time. Second, we analyze the 
system traces, using additional information provided by the system designer. Third, we generate a set of 
policies that will guide the system toward the abstract qualities. And, fourth, we analyze the generated 
policies for conflicts. 

2.6.2 Quality Metrics 

ISO 9126 (ISO, 1991) defines a set of qualities for the evaluation of software. This document breaks 
down software qualities into six general areas: functionality, reliability, usability, efficiency, 
maintainability, and portability. These characteristics are broad and may apply in different ways to 
different types of systems. In our research, we identified a group of metrics that evaluate multiagent 
system traces in order to illustrate our concepts. Each metric is formally defined and may be measured 
precisely over the current system design. 

2.6.2.1    Efficiency 

We are using a trace-length based definition of efficiency. The shorter the trace the more efficient is the 
top-level goal achievement. Our strategy here is to make assignments such that we minimize the total 
expected trace length. This minimization will be dynamic in that it will take into consideration the 
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current trace progress. Thus we consider goal achievements the system has made when determining 
shortest trace length to pursue. We then convert this logic statically into a set of policies that when 
enforced will exhibit the same behavior as a minimization algorithm, given current system goal 
achievements. Given the initial system state, we prefer to make assignments to achieve the overall 
shortest path. Thus, we will be generating directing policies proscribing assignments (they may still have 
multiple options). 

Expected trace length is defined in Equation 9. 

ExpLength(c) = X"=i 
I-PA 

(9) 

\ represents a single trace, while pf, is the probability of failure for the assignment achievement / within 
that trace. An assignment achievement is the accomplishment of an assignment by an agent. Thus, an 
assignment achievement failure is a failure of the agent to complete its assignment. The assignment 
achievement failure probability is defined in terms of capability failure given the assignment. The 
probability of failure for the agent goal assignment achievement [pf:) is the maximum of the probability 
of failure for all the capabilities required for the role in the assignment: 

PTi        TnaXCx £ capreqiASi) '^ \cx'^si) (10) 

It is evident here that some traces will have an infinite expected length (in the case of probability of 
failure is 100%). 

We are concentrating on the assignment of goals (tasks) to agents in the system. A typical goal 
assignment choice is depicted in Figure 20. Gi(x) represents the parametrized goal or task that needs to 
be achieved. Ri and Rz represent two different roles that are able to achieve the goal G/. Ai and A2 
represent two agents that posses the capabilities required to play each role. The failures are connected 
to each capability. 

Figure 20. Goal Assignment Choice with Capability Failure Probabilities 
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The failure probabilities may be represented as a matrix as in Table 5. For a given capability, only certain 
portions of the assignment may be relevant to the probability of failure. In these cases, the matrix may 
be collapsed to a more compact representation. 

Table 5 . Capability Failure Probabilities 

Capability/Assignment ^ As 
i 

Cl 

Ptic^As^ 

P/(C3,/\SI) 

Pf{CrA5) 

pf{c2.As) 

pf(c3,As) 

pncr...) 

Pf(c2,...) 

Pf{cy...) 

2.6.2.2   Quality of Product 

Quality of achieved goals falls under the ISO software quality of Functionality. Here we define quality as 
a measure of the quality of goal achievement. Quality of goal achievement may depend on the Role, 
Agent, and Goal Instance (including parameter). In our analysis, we limit ourselves to these influences 
although goal achievement quality may also depend on such things as environment, history of the 
system, and current assignments. 

Certain roles may obtain a better result when achieving certain goals; likewise certain agents may play 
certain roles better than other agents. These properties can be known at design time. Usually, this 
intuition is known by the implementers, and they may manually design an agent goal assignment 
algorithm to favor these assignments. 

For our analysis and experiments, we mapped assignments to scores. The higher the score, the higher 
the quality of product is. The scores can be specified over the entire assignment, or just portions. For 
example, role Ri may achieve goal G/ better than role R? when the parameter of G/ is of class x. A 
designer could also specify agents who produce higher quality products and thus may be part of the 
score determination. 

To analyze an entire trace, we score the trace by computing the average quality of product. We realize 
some products may be more important than others. Without loss of generality, however, we use a 
simple average as given in Equation 11 (the analysis could potentially include a more-important 

relationship between products). Let %  be the ith agent goal assignment in trace | of length n. 

QualiZ) = It 
scoreCc) (n) 

2.6.2.3    Reliability 

Sometimes failure should be avoided at all costs, thus, even if there is a probabilistically shorter trace, it 
could be the case that we choose the longer trace because we want to minimize the chance of any 
failure. Formally, we want to minimize goal assignment failures. We do this by minimizing the probability 
of capability failure. Our strategy here is to pick the minimal failure trace given the current completed 
goals in the system. 

We can use the capability failure matrix defined for Efficiency. The score we are trying to minimize is 
defined as: 

FaH(i) = I?=1p/i (12) 

Where pf. is defined as in the Efficiency metric (the probability of failure of assignment i within trace E,). 
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It is important here to see the distinction between Reliability and Efficiency. Efficiency is concerned with 
minimizing the expected trace length, while Reliability is concerned with minimizing the total number of 
failures. Thus, if we are pursuing Efficiency, we may choose a path in which there may be some failures, 
even though there is a path with no failures, because the expected trace length is shorter in the path 
with failures. Reliability will always choose the path with less expected failures, even if the path is longer 
than another. 

2.6.3    Policy Generation 

To construct our policies, we first generate a set of traces using our OMACS models as input to our 
customized Bogor model checker. We then run a metric over each trace, giving it a score. The aim here is 
to create policies to guide the system to select the highest (or lowest) scoring trace, given any sub-trace 
prefix. Thus, we create a set of assignments that will guide the system toward the maximum scoring 
traces. There may be many traces with the same maximum score, in this case we have a set of options. 
This selection is illustrated in Figure 21. We generate policies that, when followed, guide the system to 
traces that look like the highest scoring traces. Thus, for the figure, we proscribe that from state S , you 

must make goal agent assignments that are in the highest scoring traces (S    S ', etc).  For every 

sub-trace, we generate a set of agent goal assignment options. This may lead to many policies. For this 
reason, after we generate the initial set of policies, we prune and generalize them. 

Policies will be of the form: 

[guard]—* ai va.2 v... (13) 

where a. is a generalized agent goal assignment and [guard] is a conditional on the state of the system. 

The guard is also specified in terms of the achieved agent goal assignments and the available goals. The 

guard notation above is simply syntactic sugar for the form a va v.. .v^guardcondition. 

0.8 

0.8 

0.5 

Figure 21. System Traces to Prefer 

There are two different methods we use to reduce the size of the policy sets generated. One method is 
to prune useless policies. Since we produce a policy for every prefix trace, we may end up proscribing 
actions when the system did not initially even have a choice in the matter (the system was already 
forced to take that choice). We find these policies by checking the traces matched by the policies' 
left-hand side (the guard). If a policy only matches one trace, we can prune the policy as it had no effect 
on the system. 

The second method combines multiple policies through generalization. If two or more policies offer the 
same choices for assignments (meaning their right hand sides are the same), the common pieces of the 
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left hand side are computed. If the new left hand construct (the common pieces of the two policies) 

matches a non-empty intersection of traces with the current policies and the right-hand side of the new 
policy is not a subset of the right-hand side of each of the matching policies, the potential policy is 
discarded. Otherwise we remove the two policies that we have combined and add the new combined 
policy. This procedure is described more precisely in Figure 22. We repeat this procedure until we do not 
combine any more policies. 

2.6.4   Conflict Discovery 

Now that we are automatically generating policies for different abstract qualities, we may generate 
conflicting policies. These conflicts must be discovered. Once we discover these conflicts, we may use a 

partial ordering of policies to overcome these conflicts, or we may decide to even rework our initial 
system design. 

For every quality, i , we are generating a set of policies, P . The structure of a policy, p., in P   is: 

[guard] -^ (Xj v 0.2 v... (14) 

[guard] is the conditional which represents a generalization of the system state. Thus [guard] can be true 
over many different concrete states making the policy apply to many states of the system. 

Since we have this policy structure and we are generating policies for different qualities, we may have 
different types of conflicts between policies from different P's. These conflicts may be discovered by 
examining the guard of each policy and checking if there is an non-empty intersection of traces where 
both guards are active. If the intersection is non-empty and if the assignment choices are not equal, 
there is a possibility of conflict. Now, it may be the case that the right hand side of both AND'd together 
are satisfiable with the OMACS constraints, for instance, that only one agent may play a particular 
instance goal at once (Equation 15). 

Sat((ax v Oy v aj A (aa vo^v ac) A p) (IS) 

Even if the equation is satisfiable, there may still be a need for partial ordering between the policies. 
Since there may be agent failure, we may want to know what policies to relax first. 

We can partition the conflicts into two sets: definitely conflicts and possibly conflicts. The definitely 
conflicts elements will always conflict given the system design. The possibly conflicts will only conflict if 
the configuration of the system changes, i.e., in the case where there is capability or agent loss. If we 
have statistics on capability failure, we can even compute a probability of conflict. This probability could 
help the designer determine if the possibility of conflict is likely enough to spend more resources on 
overcoming it. Some conflicts may be inherent in the design, due to constraints on agents and 
capabilities or a sub-optimal configuration. Being able to see these conflicts as early as the design 
process (and especially before implementation) will greatly help, because it is much cheaper to change 
the design earlier rather than later. 

If policies generated from different abstract qualities definitely conflict, then this is an indicator to the 
system designer that with the current constraints (agents, roles, and goals), it is not possible to satisfy all 
of the stakeholder's abstract requirements. The designer and/or stake holder must then decide to either 
modify the models by adding agents, changing goals, or by relaxing or redefining the abstract 
requirement. 

We can, however, choose to resolve the conflicts by specifying which quality we prefer in each 
conflicting case. The designer may prefer efficiency over quality in certain cases and quality over 
efficiency in other cases. This choice will be a conscious decision by the designer (perhaps after 
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for all policy e policies do 
combine = 0 
for all policy2 e policies do 

if policy # policy2 A policy.actions = policy2.actions then 
combine = combine U policy2 

end if 
end for 
if combine i* 0 then 

for all policy3 e combine do 
commonGuard = policy.guard n policyS.guard 
fail = false 
for all policyOld e policies do 

if  policyOld.guard c commonGuard A policyOld.actions 
CZ: policyB .actions then 

fail = true 
end if 

end for 
if —i fail then 

policies = policies - {policy, policyB} 
policies = policies U {<commonGuard, policy.actions>} 

end if 
end for 

end if 
end for 

Figure 22. Policy combining algorithm 

consulting the stake-holders), and thus, a more engineered approach than the ad-hoc and unclear 
decisions that might be inadvertently made by implementers. 

2.6.5    Effectiveness of Using Guidance Policies for Achieving Abstract Qualities 

We took three different multiagent systems to test our policy generation. One example, the Cooperative 
Robotic Floor Cleaning Company (CRFCC) describes a scenario where a multiagent system is given the 
goal of cleaning the floor of a multifloor building. For the CRFCC system, we explored the efficiency 
quality. The second system we used is the Improvised Explosive Device (IED) Detection; in this example, 
we focus on the reliability of the system. The third example is an Information System. Quality of product 
was the concentration in that example. 

2.6.5.1    CRFCC 

We test our approach on the Cooperative Robotic Floor Cleaning Company (CRFCC) as described in 
Section 2.3.2. An example policy is given in Figure 23. The left side of the policy is the guard, in Figure 23, 
each of the agent goal assignments on the left hand side are AND'd together (they must all be true). The 
number after each agent goal assignment is the minimum number of agent goal assignment 
achievements that must have occurred thus far to make the assignment clause true. Each agent goal 
assignment on the right hand side is an option the system may take when choosing agent goal 
assignments in order to follow a minimum probabilistic trace. 

<Agent2,Pickuper,Pickuparea()>;4 <Agent2,Pickuper,Pickuparea()> 
<Agentl,Organizer,Dividearea()>:l => <Agent5,Vacuummer, Vacuum Area() 
<Agent5,Vacuummer,VacuumArea()>:l  

Figure 23. CRFCC Generated Policy 
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We generated the policies and ran a simulation of the CRFCC system. The average of 1000 runs at each 
number of rooms was computed. We plotted the total number of assignments the system made to 
achieve its objective. This allows us to evaluate the impact of the policies. 

Figure 24 gives the results for a system with the generated policies and one without the generated 
policies. The plot clearly shows that the system with the generated policies is guided toward efficiency, 
while the system without the policies has a much lower efficiency. 

2.6.5.2    Information System 

We also tested the Information System as described in Section 2.5.2.2. We generated a set of quality 
policies using the following properties: the Remote Retrieval role achieves a better quality of product 
than the Local Retrieval role for any goal parameter. However, the PickyLocalAgent performs the best 
when using the Local Retrieval role to achieve the Retrieve Information goal for any parameter. Using the 
automatic policy generation we generated 627 policies, which were than reduced to 69 using the 
techniques described in Section 2.6.3. We then ran simulations; the results showed that when the 
policies were enforced, we always achieved the highest quality results, without the sacrifice of any 
additional failures. 
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Figure 24. Efficiency Policy Generation Effects on Assignments 

2.6.5.3    IED Detection System 

We also tested our approach against the IED Detection System as described in Section 2.5.2.3. Various 
circumstances may cause an agent to fail or may allow an agent to succeed. For a system such as this, it 
is critical that it be as reliable as possible. We focus on this aspect in our policy generation. Table 6 gives 
the collapsed capability failure matrix for the IED detection system. Capabilities not listed have a 0 
expected probability of failure. We generated policies by analyzing the traces generated over the 
models. The system initially generated 209 policies; after automatic pruning and generalization, we had 
45 policies. We then ran the system using a simulator, breaking up the search area into pieces from 1 to 
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99. At each number of search areas, we ran the simulation 1000 times and took the average of the 
results. 

Table 6. IED Goal Assignment Choice with Capability Failure Probabilities 

Capability/Assignment * 

movement/SmallPatroller 0.5 
dispose/SmallG ripper 0.1 

The policies forced the system to never have an agent failure. This is reflected in the graph in Figure 25. 
As can be seen, the number of agent assignments with the generated policies is less. This is because in 
the case of agent failures the goal (task) must be reassigned. 

2.6.6   Related Work 

There has been work in incorporating abstract qualities into multiagent systems. Tropos defines the 
concept of a soft-goal (Bresciani, Giorgini, Giunchiglia, Mylopoulos, & Perini, 2004) that describes 

abstract qualities for the system. These soft-goals, however, are mainly used to track decisions in the 
goal model design for human consideration. 

Some work has been done on model checking multiagent systems (Robby etal., 2006, Vigano & 
Colombetti, 2008). While this work has helped the designer by providing some feedback on their design, 
it has not yet leveraged model checking to help automate the design process to the degree we present. 
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Figure 25. Reliability Policy Generation Effects on Assignments 
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2.6.7   Conclusions 

We have provided a framework for stating, measuring, and evaluating abstract quality requirements 
against potential multiagent system designs. We do this by generating policies that can be used either as 
a formal specification, or dynamically within a given multiagent system to guide the system toward the 
maximization (or minimization) of the abstract quality constraints. These policies are generated offline, 
using model checking and automated trace analysis. 

Our method allows the system designer to see potential conflicts between abstract qualities that can 
occur in their system. This allows them to resolve these conflicts early in the system design process. The 
conflicts can be resolved using an ordering of the qualities that can be parametrized on domain specific 
information in the goals. They could also cause a system designer to decide to change their design to 
better achieve the quality requirements. This is easier, since we are in the system design and not in the 
implementation. 

These policies can be seen to guide the system toward the abstract qualities as defined in the metrics. 
Our experiments showed significant performance, quality, and reliability increases over a system using 
the same models, but without the automated policy generation. 

2.7   Future Work 

Guidance policies add an important tool to multiagent policy specification. However, with this tool 
comes complexity. Care must be taken to insure that the partial ordering given causes the system to 
exhibit the behavior intended. Tools that can visually depict the impact of orderings would be helpful to 
the engineer considering various orderings. We are currently working on inferring new policies from a 
given set of policies. For example, if a system designer wanted to get their system to a state for which 

they defined policy, we would automatically generate guidance policies. This could be useful when the 
policies are defined as finishing moves similar to finishing moves in chess. That is they proscribe optimal 
behavior, given a state. Thus, we would like to get to the state where we know that optimal behavior. 

Guidance policies may be ordered using a more-important-than relation, in our policy learning work, we 
did not utilize that ordering. However, we hypothesize that if we ordered the learned policies by 
confidence, the system would be able to recover from learning errors more quickly. This is because the 
learning error policy would have a lower confidence than the other policies and thus would be 
suspended first in the case of a policy conflict or when the system cannot progress with the current 
policy set. Confidence may be computed using the score function described in Section 2.5.1. 

Currently our learning algorithm assumes that only one action happens at a time. The actions of a 
multiagent system are not always easily serializable. In order to handle concurrent actions, we propose 

to consider the concurrent actions as a new compound action. In this way you may use this algorithm 
with minimum modification. 

Another idea to improve the policy learning is by automatically abstracting the goal parameters and the 
state space using model checking to create a state space abstraction. We could then use this state space 
abstraction during learning instead of the exact state space. This would help with state space explosion 
and automate the goal parameter abstraction. 

In all of our policy generation for abstract qualities experiments we abstracted away the goal parameter. 
Automated abstraction of the goal parameter using classification is an area that needs to be explored. If 
we had a more precise notion of the goal parameter, we would better be able to generate policies 
targeting attributes of the goal parameter. This would help in an automated policy conflict resolution 
suggestion. 
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The effect of applying multiple qualities within the same multiagent system should be evaluated. We 

expect that with conflict resolution, the designer will be able to prioritize the different qualities in 
different situations. This must be studied in current multiagent system designs to determine how much 
automation is required to feasibly resolve these conflicts. 

Another area that can be explored is the splitting of policies to be able to target conflicts more precisely 
automatically. This of course needs to be balanced with generality (we would not want one policy for 
each possible scenario). 

Currently our policy-combining algorithm does not ensure that we get the minimum number of policies 
possible given the previously generated policies. This is because we combine the policies two at a time 
randomly choosing with no backtracking. It could be the case that if we did not combine the first two 
policies, we may have been able to combine more later. In our experiments, this was not much of an 

issue since we were left with a small number of policies after combining (less than 100). This, however, 
could become an issue, as designs grow larger and should be considered. 

More metrics over the multiagent system traces should be developed. For example. Security also falls 
under the ISO software quality of Functionality. Focusing on information flow, we could generate a set of 
policies to minimize information dissemination (maximizing privacy). 

Policies show much promise as a specification tool for Multiagent systems. Systems must be adaptable, 
composable, and reliable. As technology grows more and more pervasive, so will the need to be able to 
verify that these systems will behave within certain bounds. This requires that we engineer our systems 
from the ground up with formalisms. These forma isms must describe the designer's requirements and 
intentions. We will also need a means of analysing the impacts of the designer's intentions. Using formal 
policies is one way of achieving this automated verification. 
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3   ORGANIZATION-BASED MULTIAGENT SYSTEMS ENGINEERING 

Our main research objective was to develop a software engineering methodology for engineering 
high-assurance multiagent systems. Our goal was to provide a complete software engineering 
methodology for developing multiagent systems where assurance techniques are integrated in all levels 
of the development cycle starting from system design down to deployment. 

This part of the report describes the Organization-based Multiagent System Engineering (O-MaSE) 
Process Framework, which helps process engineers define custom multiagent systems development 
processes. O-MaSE builds off the MaSE methodology and is adapted from the OPEN Process Framework 
(OPF). OPF implements a Method Engineering approach to process construction. The goal of O-MaSE is 
to allow designers to create customized agent-oriented software development processes. O-MaSE 
consists of three basic structures: (1) a metamodel, (2) a set of methods fragments, and (3) a set of 
guidelines. The O-MaSE metamodel defines the key concepts needed to design and implement 
multiagent systems. The method fragments are operations or tasks that are executed to produce a set of 

work products, which may include models, documents, or code. The guidelines define how the method 
fragments are related to one another. The paper also demonstrates two examples of creating custom 
O-MaSE processes. 

3.1   Introduction 
The software industry is facing new challenges. Businesses today are demanding applications that can 
operate autonomously, can adapt in response to dynamic environments, and can interact with other 
applications in order to provide comprehensive solutions. Multiagent system (MAS) technology is a 

promising approach to these new requirements (Luck, McBurny, Shohory, & Willmot, 2005). Its central 
notion - the intelligent agent - encapsulates all the characteristics (i.e., autonomy, proactive, reactivity, 
and interactivity) required to fulfill the requirements demanded by these new applications. 

In order to develop these autonomous and adaptive systems, novel approaches are needed. In the last 
several years, many new processes for developing MAS have been proposed (Bergenti, Gleizes, & 
Zambonelli, 2004); unfortunately, none of these processes have gained widespread industrial 
acceptance. Reasons for this lack of acceptance include the variety of approaches upon which these 
processes are based (i.e., object-oriented, requirements engineering, and knowledge engineering) and 
the lack of Computer Aided Software Engineering (CASE) tools that support the process of software 
design. There have been some approaches suggested for increasing the change of industry acceptance. 
For instance, Odell et al. suggest presenting new techniques as an incremental extension of known and 
trusted methods (Odell, Parunak, & Bauer, 2001), while Bernon et al. suggest the integration of existing 
agent-oriented processes into one highly defined process (Bernon, Cossentino, Gleizes, Turci & 
Zambonelli, 2004). Although these suggestions may be helpful in gaining industrial acceptance of 
agent-oriented techniques, we believe that a more promising way is to provide more flexibility in the 
approaches offered. The main problem with these approaches is that they do not provide assistance to 
process engineers on how to extend or tailor these processes. In this vein, Henderson-Sellers suggests 
the use of method engineering using a well defined and accepted metamodel in order to allow users to 
construct and to customize their own processes that fit their particular approaches to systems 
development (Henderson-Sellers & Giorgini, 2005). Henderson-Sellers argues that by defining method 
fragments based on a common underlying metamodel, new custom processes can be created that 
support user defined goals and preferences. 

This part of the report presents an overview of the Organization-based Multiagent System Engineering 
(O-MaSE) Process Framework. The goal of the O-MaSE Process Framework is to allow process engineers 
to construct custom agent-oriented processes using a set of method fragments, all of which are based on 
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a common metamodel. To achieve this, we define O-MaSE in terms of a metamodel, a set of method 
fragments, and a set of guidelines. The O-MaSE metamodel defines a set of analysis, design, and 
implementation concepts and a set of constraints between them. The method fragments define how a 
set of analysis and design products may be created and used within O-MaSE. Finally, guidelines define 
how the method fragment may be combined to create valid O-MaSE processes, which we refer to as 
O-MaSE compliant processes. 

3.2   Background 

One of the major problems faced by agent-oriented software engineering is the failure to achieve a 
strong industry acceptance. One of the reasons hindering this acceptance is a lack of an accepted 
process-oriented methodology for developing agent-based systems. An interesting solution to this 

problem is the use of approaches that allow us to customize processes based on different types of 
applications and development environments. One technique that provides such a rational approach for 
the construction of tailored methods is Method Engineering (Brinkkemper, 1996). 

Method Engineering is an approach by which process engineers construct processes (i.e., methodologies) 
from a set of method fragments instead of trying to modify a single monolithic, "one-size-fits-all" 
process. These fragments are generally identified by analyzing these "one-size-fits-all" processes and 
extracting useful tasks and techniques. The fragments are then redefined in terms of a common 
metamodel and are stored in a repository for later use. To create a new process, a process engineer 
selects appropriate method fragments from the repository and assembles them into a complete process 
based on project requirements (Brinkkemper, 1996). 

However, the application of Method Engineering in the development of agent-oriented applications is 
non-trivial. Specifically, there is no consensus on the common elements of multiagent systems. Thus, it is 
has been suggested that prior to developing a set of method fragments, a well-defined metamodel of 
common agent-oriented that are typical of most varieties of MAS (e.g., adaptive, competitive, 
self-organizing, etc.) should be developed (Beydoun, Gonzalez-Perez, Henderson-Sellers, & Low, 2005). 

Fortunately, we can leverage the OPEN Process Framework (OPF), which provides an industry-standard 
approach for applying Method Engineering to the production of custom processes (Firesmith & 
Henderson-Sellers, 2002). The OPF uses an integrated metamodel-based framework that allows 
designers to select method fragments from a repository and to construct a custom process using 
identified construction and tailoring guidelines. This metamodel-based framework is supported by a 
three-layer schema as shown in Figure 26. The M2 layer includes the OPF metamodel, which is a generic 
process metamodel defining the types of method fragments that can be used in Ml. Thus a process 
(such as OPEN) can be created in Ml by instantiating method fragments from the M2 metamodel. 

The OPF metamodel consists of Stages, Work Units (Activities, Tasks, and Techniques), Producers, Work 
Products, and Languages. A Stoge is defined as a "formally identified and managed duration within the 
process or a point in time at which some achievement is recognized" (Firesmith & Henderson-Sellers, 
2002, pp. 55). Stages are used to organize Work Units, which are defined as operations that are carried 
out by a Producer. There are three kinds of Work Units in OPF: Activities, Tasks, and Techniques. 
Activities are a collection of Tasks. Tasks are small jobs performed by one or more Producers. Techniques 
are detailed approaches to carrying out various Tasks. Producers use Techniques to create, evaluate, 
iterate, and maintain Work Products. Work Products are pieces of information or physical entities 
produced (i.e., application, document, model, diagram, or code) and serve as the inputs to and the 
outputs of Work Units. Work Products are documented in appropriate Languages. 
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Figure 26. OPEN Process Framework 

The Ml layer serves as a repository of method fragments instantiated from the M2 metamodel. A set of 
rules governing the relationship between these concepts (i.e., a process-specific metamodel and a set of 
reusable method fragments) is also defined in Ml. The process engineer uses the guidelines to extend, 
to instantiate, and to tailor the predefined method fragments for creating a custom process in the Ml 
layer. These custom processes are then instantiated at the MO level on specific projects; the actual 
custom process as enacted on a specific project is termed a process instance. 

Alternatively, the FIPA (Foundation for Physical Agents) Technical Committee (TC) methodology group2 

is working on defining reusable method fragments in order to allow designers to specify custom 
agent-oriented processes (Seidita, Cossentino, & Gaglio, 2006). Although this approach is quite similar to 
OPF (they are both based on method engineering), its metamodel is derived from the Object 
Management Group (OMG) Software Process Engineering Metamodel3 (SPEM). SPEM is based on three 
basic process elements that encapsulate the main features of any development process: Activities, 
Process Roles, and Work Products. Development processes are assembled from a set of SPEM Activities, 
which represent tasks that must be done. An Activity is essentially equivalent to an OPF Work Unit and is 
performed by one or more Process Roles (which corresponds to OPF Producers). Process Roles carry out 
the Activities in order to produce Work Products (the same term is used here by OPF). A detailed 
description of this metamodel and a comparison with other method fragment proposals can be found in 
(Cossentino, Gaglio, Henderson-Sellers & Seidita, 2006). The next section focuses on using Method 
Engineering and the OPF metamodel to specify O-MaSE. 

3.3   O-MaSE Process Framework 
In this section, we define the O-MaSE Process Framework as shown in Figure 27, which is analogous to 
the OPF from Figure 26. In fact, we use the OPF metamodel in level M2. Level Ml contains the definition 
of O-MaSE in the form of the O-MaSE metamodel, method fragments, and guidelines. In the remainder 
of the section, we present the three components of the O-MaSE contained in the Ml. We first describe 
the O-MaSE metamodel followed by a description of the method fragments obtained. Finally, we discuss 
the guidelines that govern the construction of O-MaSE compliant processes. 

2 See http://www.fipa.org/activities/methodology.html 

3 See http://www.omg.org/cgi-bin/docPformal/2005-01-06 
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Figure 27. O-MaSE Process Framework 

3.3.1   Metamodel 

The O-MaSE metamodel defines the main concepts we use to define multiagent systems. It encapsulates 
the rules (grammar) of the notation and depicts those graphically using object-oriented concepts such as 
classes and relationships (Firesmith & Henderson-Sellers, 2002). The O-MaSE metamodel is based on an 
organizational approach (DeLoach & Valenzuela, 2007; DeLoach, Oyenan & Matson, 2008). As shown in 
Figure 28, the Organization is composed of five entities: Goals, Roles, Agents, a Domain Model, and 
Policies. Next we describe each entity in detail. 

A Goal defines the overall functional of the organization. That is, it could be seen as a desirable situation 
(Russel & Norvig, 20002) or the objective of a computational process (van Lamsweerde, Darimontm, & 
Letier, 1998). A Role defines a position within an organization whose behavior is expected to achieve a 
particular goal or set of goals. For that reason, each role has specific responsibilities, rights, and 
relationships defined in order to achieve its overall goal(s). Agents are assigned to play those roles and 
carry out the role's responsibilities using the rights and relationships defined for those roles. In our 
meta-model, an Agent - as described in (Russel & Norvig, 20002) - is an entity that perceives and can 
perform actions upon its environment; which includes human as well as artificial (i.e., either hardware or 

software) entities. In order to perceive and to act on the environment, an agent possesses a set of 
Capabilities, which determine how well agents are capable of playing roles. Furthermore, roles require a 
set of capabilities to perform their responsibilities into the organization. These capabilities can be used 
to capture soft abilities (i.e., plans) or hard abilities (i.e., actions). In fact. Plans are associated with 

access/control over specific resources, the ability to migrate to a new platform, or the ability to use 
computational algorithms that allow the agent to carry-out specific functional computations. In contrast. 
Actions are associated with hardware of software artifacts (e.g., sensors and effectors) that allow agents 
to perceive or sense upon a real world environment. 

The Domain Model captures the real world. The Domain Model maps the environment objects - that 
include agents - and the relationships between those objects (i.e., environment properties) (DeLoach & 
Valenzuela, 2007). Likewise, a Policy constrains how an organization may behave in a particular situation. 
In addition, the Domain Model is used to define specific organizations policies governing those object 
types and their relationship with the environment. 

Finally, other important concepts mapped in our meta-model are: Organization Agents (OA) and 
Protocols. OA are organization that behaves as agents in a higher-level organization. OA captures the 
idea of organizational hierarchy. In such sense, OA may possess capabilities, may coordinate with other 
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agents, and be assigned to play roles. This concept represents an extension to the traditional 
Agent-Group-Role (AGR) model (Ferber & Gutknecht, 1998) (Ferber, Gutknetcht, & Michel, 2003) and the 
organizational meta-model proposed by Odell et al. in (Odell, Nodine, & Levy, 2005). 

Organization 

participates-in 
participates-in 

External 
Protocol 

S K 

'V 
-constrains 

nteracts-with 

Figure 28. O-MaSE metamodel 

The Protocol concept helps to capture the idea of interactivity either the organization with external 
/Actors or Agents and Roles. Generally, a protocol "describes a communication pattern s an allowed 
sequence of messages between agents and the constraints on the content of those messages" (Odell, 
Parunak, & Bauer, 2001; Odell, Parunak, & Bauer, 2000). A protocol can be of two types: External 
Protocol or Internal Protocol. The first maps interactions between the organization and external actors 
(i.e., humans or other software applications). The second represents a communication pattern between 
an agent (who initiates) and other (who response) playing a role into the organization. 

3.3.2   Method Fragments 

As mentioned above, the OPF metamodel defines Stages, Work Units, Work Products, Producers, and 
Languages, which are used to construct customized processes. In our work, the initial set of method 
fragments are derived from an extended version of the MaSE methodology (DeLoach, Wood & 
Sparkman, 2001). O-MaSE assumes an iterative cycle across all phases with the intent that successive 
iterations will add detail to the models until a complete design is produced. This nicely fits the OPF's 
Iterative, Incremental, and Parallel Life Cycle model). Our current work focuses on analysis and design. In 
O-MaSE, we have identified three main activities: (1) requirements engineering, (2) analysis, and (3) 
design. As shown in Table 7, we decompose each Activity into a set of Tasks and identify a set of 
Techniques that can be used to accomplish each Task. We also show the different Work Products, 
Producers, and Languages related to the associated Work Units. Due to the page limitations, we cannot 
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Table 7. O-MaSE Method Fragments 

Work Units 

Activity Task Technique Work Products Producer 

Requirement 
Engineering, 

Analysis; and. 
Design 

Model Goals AND/OR Decomposition 

Goal Model Goal Modeler 
Goal Refinement 

Attribute-Precede-Trigger 
Analysis 

Model Organizational 
Interfaces 

Organizational Modeling 
Organization 

Model 
Organizational 
Modeler 

Model Roles Role Modeling Role Model 

Role Modeler 
Define Roles Role Description 

Role Description 
Document 

Model Domain Domain Modeling Domain Model Domain Expert 

Model Agent Classes Agent Modeling Agent Class Model 
Agent Class 
Modeler 

Model Protocol Protocol Modeling Protocol Model Protocol Modeler 

Model Plan Plan Specification Agent Plan Model Plan Modeler 

Model Policies Policy Specification Policy Model Policy Modeler 

Model Capabilities Capability Modeling Capabilities Model 
Capabilities 
Modeler 

Model Actions Action Modeling Action Model Action Modeler 

discuss each of these separately4. However, to illustrate our basic approach, we describe the details of 
the requirements engineering activity. 

In the Requirement Engineering activity, we seek to translate systems requirement into system level 
goals by defining two tasks: Model Goals and Goal Refinement. The first focuses on transforming system 
requirements into a system-level goal tree while the second refines the relationships and attributes for 
the goals. The goal tree is captured as a Goal Model as defined in (Miller, 2007). The Goal Modeler must 
be able to: (1) use AND/OR Decomposition and Attribute-Precede-Trigger Analysis (APT) techniques, (2) 
understand the System Description (SD) or Systems Requirement Specification (SRS), and (3) interact 
with domain experts and customers. The result of these two tasks is a refined Goal Model. 

3.3.3   Guidelines 

Guidelines are used to describe how the method fragments can be combined in order to obtain O-MaSE 
compliant processes. These guidelines are specified in terms of a set of constraints related to Work Units 
and Work Products, which are specified as Work Unit preconditions and post-conditions. We formally 

specify these guidelines as a tuple {Input, Output, Precondition, Post-condition) where Input is a set of 
Work Products that may be used in performing a work unit. Output is a set of Work Products that may be 
produced from the Work Unit, Precondition specifies valid Work Product/Producer states, and 
Post-condition specifies the Work Product State (see Table 7) that is guaranteed to be true after 
successfully performing a work unit (if the precondition was true). To formally specify pre and 
post-conditions, we use first order predicate logic statements defined over the Work Products (WP) and 
Producers (P), the Work Products states, and the iteration (n) and version (m) of the Work Products. 
Specific predicates related to work product and producer states are defined in Table 8. 

4 A detailed description of the current set of O-MaSE Tasks, Techniques, Work Products, and Producers 
can be found at http://macr.cis.ksu.edu/0-MaSE/ 
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Figs. 4-8 illustrate a set of guidelines for a few of the Tasks defined in Table 7. Figure 29 defines the 
Model Goals task. Inputs to the task may include the Systems Description (SD), the Systems Requirement 
Specification (SRS), the Role Description Document (RD), or a previous version of the Goal Model (GM). 
Actually, only one of these inputs is required, although as many as are available may be used. The inputs 
are used by the Goal Model Producer (GMP) to identify organization goals. As a result of this task, the 
Work Product GM is obtained. 

Table 8. Work Product/Producer States 

No. State Definition 
1 inProcess() True if the work product is in process. 
2 completed() True if the work product has been 

finished. 

3 exists() exists() = inProcess() v completed!) 
4 previouslterationQ True if the work product's iteration is 

any previous one. 
5 available() True if the producer specified is 

available to work on the task 

Figure 30 depicts the task Goal Refinement. Generally, this task only requires as input a GM from the 
Model Goals task and produces a refined Refined Goal Model model. 

Figure 31 shows the task Model Agent Classes, which requires as input a Refined Goal Model (RG), an 
Organization Model (OM), or a Role Model (RM). As output an Agent Class Model (AC) is obtained. In the 
task, the Agent Class Modeler (ACM) identifies the types of agents in the system. A Capability Model 
(CM) may also be used as input because agents may be defined in terms of capabilities. However, the 
CM is never sufficient or mandatory and thus is termed as an optional input (it is not part of the 
Precondition). The Protocol Model (PrM) may be useful in identifying relationships between agents and 
thus, it is also optional. 

The Model Plan task is defined in Figure 32. The inputs can include a RG, RM, or an AC, which allow the 
Plan Modeler (PIM) to define plans used by agents to satisfy organization goals. In addition, a PrM, 
Action Model (AM), and CM are required as input because such plans may require the interaction with 
other entities using some defined protocol. 

Finally, the Model Protocol task is defined in Figure 33. To document a PrM, the Protocol Modeler (PrP) 
requires the RM and the AC or a previous iteration of the PrM. The Domain Model (DM), OM, and AM 
are optional inputs to this task; they define actions that the agent may perform on environment objects, 
which can also be modeled as interactions. 

TASK NAME: Model Goals 
Input 

SD,SRS, 
RD,GM 

Output 

GM 
Precondition 

((exists(<SD,n,m>) v exists(<SRS,n,m>) v 

exists(<RD,n,m>) v previouslteration(<GM>)) A 

available(GMP) 

Postcondition 

completed(<GM,n,m>) 

Figure 29. Model Goal Task Constrains 

TASK NAME: Goal Refinement 

Input 

GM 
Output 
RG 

Precondition 

Completed(<GM,n,m>) A available(GMP) 

Figure 30. Goal Refinement Task Constrains 

Postcondition 

exists(<RG,n,m>) 
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TASK NAME: Model Agents Classes 
Input Output Precondition Postcondition 
RG^RM, 
OM,AC, 
CM,PrM 

AC (exists(<RG,n/m>) v exlsts(<RM,n,m>) v 

exlsts(<OM,n,m>) v exlsts(<SM,n,m>)    v 

previouslteratlon(<AC>)) A available(ACM) 

completed(<AC,n,m>) 

Figure 31. Model Agent Classes Task Constrains 

TASK NAME: Model Plan 

Input Output Precondition Postcondition 
RG,RM, 
AC,PrM; 

AM,CM 

PIM ((exists(<RG,n,m>) A exists(<AC,n,m>)) v 

exists(<PrM,n,m>) v exists(<AM,n,m>) v 

previouslteration(<PIM>)) A available(PIP) 

completed(<PIM,n,m>) 

Figure 32. Model Plans Task Constrains 

TASK NAME: Model Protocol 

Input Output Precondition Postcondition 
RM^CDM, 
OM,AM 

PrM ((exists(<RM,n,m>) A exists(<AC/n,m>))v 

previouslteration(<PrM>)) A    available(PrP) 

completed(<PrM,n,m>) 

Figure 33. Model Protocol Task Constrains 

3.4   WMD Search Example 
Next, we present two examples of applying the O-MaSE to derive custom processes. We combine 
O-MaSE method fragments to create a custom process for a Weapon of Mass Destruction (WMD) system 
in which agents detect and identify WMD in a given area. There are three types of WMD that can be 
identified: radioactive, chemical, and biological. Once a suspicious object is found, it must be tested to 
determine the concentration of radioactivity and nerve agents (chemical and biological). If the object is 
indeed a WMD, it is removed. The mission is successful when the area has been entirely searched and all 
the WMD have been removed. In the subsequent subsections, we present two custom processes for the 
WMD Search application. 

3.4.1   Basic O-MaSE Process 

The first process we derive is appropriate for a small agent-oriented project in which reactive agents 
achieve goals that have been assigned at design time. Essentially, the only products required for this 
type of system are the system goals, agent classes, agent plans, and inter-agent protocols. This type of 
process leads to a rigid MAS but is very easy and fast to develop. This process may also be suitable for 

prototyping, where a simple and rapid process is needed. 

Figure 34 shows the result of applying O-MaSE guidelines to the creation of our custom process. (Tasks 
are represented by rounded rectangles while Work Products are represented by rectangles.) The Work 
Products associated with the products identified above are included, along with the Tasks required to 
produce them. (We do not show the Producers to simplify the figure, but we assume the appropriate 
Producers are available.) Connections between Tasks and Work Products are drawn and the 
preconditions and post-conditions of each Task are verified. Each Task will be discussed below. 

52 



SRS 

sj/ 

f       Model Goals       ^ 

1    AND/OR Goal Treo    | 

4/ 
f     Goal Refinement     J 
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Figure 34. Basic O-MaSE Process 

Model Goals/Goal Refinement. From the System Description, the Goal Modeler defines a set of system 
level goals in the form of an AND/OR goal tree. This initial goal tree is refined into a refined Goal Model 
as shown in Figure 35. The syntax uses a rectangle with the type designator «Goal». The diamond 
notation is used to denote AND refined goals (conjunction), whereas the triangle notation is used to 
denote OR refined goals (disjunction). Refined Goal Models include the notion of goal precedence and 
goal triggering (Miller 2007). A precedes determines which goals must be achieved while a trigger 
relation signifies that a new goal may be instantiated when a specific event occurs during the pursuit of 
another goal. Figure 35 captures a goal-based view of the system operation. 

WMD_cletected(location) 

Figure 35. Goal Model 

Model Agent Classes. The purpose of this task is to identify the type of agents in the organization and to 
document them in an Agent Class Model (Figure 36). In our example, agents are defined based on the 
goals they can achieve and the capabilities they possess as specified by the «achieves» and «possesses» 
type designators in each agent class (denoted by the «Agent» type designator). Protocols between agent 
classes are identified by arrows from the initiating agent class to the receiving agent class. The details of 
these protocols are specified later in the Model Protocols task. 
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«Agent» 
WMD_AgenI_ 

=<achieves» Search Area 
!:<achieves» Check for Radioactive Weapon 
!;<possesses» SearchPlan 
,::<possesses» Radioactive_Detect_Plan 

Obiect_found([ocation) 

no_det6Ctiqn(lQcation) 

«Agent» 
WMD_Agent_2 

«achieves» Search Area 
«achieves» Check for Chemical Weapon 
«pos5esses» Search_Plan 
«possesses» Chemical_Detect_Plan 

«Agent» 
WMD_Agent_3 

«achieves» Divide Area 
«achieves» Check for Biological Weapon 
«achieves» Remove WMD 
«possesses» Divide_Area_Plan 
«possesses» Biological_Detect_Plan 
«possesses» Remove_WMD_Plan 

Figure 36. Agent Class Model 

Model Protocol. The Model Protocol task defines the interactions between agents. For example, Figure 
37 captures the WMD_detected protocol where WMD_Agent_l, (who is pursuing the Check for 
Radioactive Weapon goal) detects a WMD and notifies WMD_Agent_3 (who is pursuing the Remove 
WMD goal). The notification is done by sending a detected message with the location as parameter. 
Upon reception of this message, an acknowledgment is returned. 

WMD_detected    J 

WMD_Agent_1 ; Initiator |               !WMD  Agent  3 
1                        '               '                          1 

Participant 

detected(location)          _, 
1                                                         >l 
1                             ack                          | 
1 ~~                                                         1 
1                                                             i 

Figure 37. Protocol Model 

Model Plan. The Model Plan task defines plans that agents can follow to satisfy the organization's goals. 

To model this, we use finite state automata to capture both internal behavior and message passing 
between agents. Figure 38 shows the Radioactive_Detect_Plan possessed by WMD_Agent_2 to achieve 
the Check for Radioactive Weapon goal. The plan uses the goal parameter, location, as input. Notice 

that, a plan produced in this task should correspond to all related protocols. 

1 
succ = gotoClocation) 

[succ] 

value = measureRadioactivilyO 

[not succJ/failureO [not succ] / failureO 

[value >= thrshold] 
trigger(WMD_detectedOocation)) 

4> 

[value < thrshold] 

DeactivateSensorsO 

Figure 38. Plan Model 
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3.4.2   Extended O-MaSE Process 

To produce a more robust system that adapts to changes and internal failures, it is necessary to have a 
process that can produce additional information such as roles and policies. Roles define behavior that 
can be assigned to various agents while policies guide and constrain overall system behavior. To 
accommodate such a system, additional Tasks must be introduced into the process to produce a Role 
Model and a Policy Model. This type of process allows designers to produce flexible, adaptive, and 
autonomous systems. Figure 39 shows the custom process for this example. Added tasks are: 

- 

SRS i Requirements 

c 1 
Model Goals 

1 
J 

AND/OR Goal Tree 

c 
i 

Coal Refinement J 
1 Refined GMoOS 1 

'c Model Roles J Analysis 

1 Rote Model k 
L 

- ^ 

r 

^""\^^ 
Design 

Model Protocol 

1 
J^ \^> 

A ! Protocol Model 1 Model Agent Classes Model Policies        J 

c 

 :     / A             / 
1 

X 
Agent Class Mode! /   i Policy Model 

- "    ' 

Model Plan .JH Agent Plan Model 

Figure 39. Extended O-MaSE Process 

Model Roles. The Model Roles task identifies the roles in the organization and their interactions. Role 
Modelers focus on defining roles that accomplish one or more goals For example, each role in the Role 

Model in Figure 40 achieves specific goals from Figure 35. Each role also requires specific capabilities. 

Model Policy. The Model Policy task defines a set of formally specified rules that describe how an 
organization may or may not behave in particular situations (Harmon, DeLoach, & Robby, 2007). For 
example, a policy "An agent may only play one role at a time" can be translated as 

Val,a2:agent, r:role | al.plays(rl) A al.plays(r2) —>rl=r2 

3.5   Conclusions 

This section has presented the O-MaSE Process Framework, which allows users to construct custom 
agent-oriented processes from a set of standard methods fragments. The main advantages of our 
approach are that: 

(1)  all O-MaSE fragments are based on a common metamodel that ensures the method fragments 

can be combined in a coherent fashion. 
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(2) each method fragment uses only concepts defined in the metamodei to produce work products 

that can be used as input to other method fragments; and, 

(3) the associated guidelines constrain how method fragments may be combined in order to 

assemble custom O-MaSE compliant processes that produce an appropriate set of products 

without producing unnecessary products. 

«Role» 
Chemical Detector 

«acliieves» Check for ChemKal Weapon 
«requires» Chemical Detect Plan 

«Role» 
Radioactive Detector 

«Role» 
Biotoqical Detector 

«achieves» Check for Radioactive Weapon 
«requires» Radioaclive^Detect_Plan 

«achieves» Check for Biological Weapon 
«requires» Biological_Detect_Plan 

«Role» 
Dmder ' 

«:Role» 
WMD Remover 

«achieves» Dwide Area 
«requires» Divide_Area_Plan 

«achieves» Remove 'NMD 
«requires» Remove_WMD_Plan 

«Role» 
Searcher 

«achieves» Search Area 
«requires» Search Plan 

Figure 40. Role Model 
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4   THE AGENTTOOL III DEVELOPMENT ENVIRONMENT 

The agentTool III (aT3) development environment is built on the Eclipse platform and provides that 
traditional model creation tools to support the analysis, design, and implementation of multiagent 
systems following the Organization-based Multiagent Systems Engineering (O-MaSE) methodology. It 
also provides verification and metrics computation components. In addition, aT3 provides the ability to 
compose, verify, and maintain customized O-MaSE complaint processes. 

The agentTool III (aT3) development environment supports the creation of multiagent systems following 
the Organization-based Multiagent Systems Engineering (O-MaSE) methodology, as discussed in Section 
0. aT3 is a successor to the original agentTool that was developed in 2000 - 2001 at the Air Force 
Institute of Technology and is currently a project of the Multiagent & Cooperative Robotics Laboratory5 

(MACR) at Kansas State University. aT3 was developed in Java and built on top of the Eclipse6 platform 

and the Eclipse Process Framework7 (EPF). 

The goal of aT3 is to support and enforce the O-MaSE methodology, which allows users to create their 
own customized development processes. O-MaSE has three structures - a metamodel, a set of methods 
fragments, and a set of guidelines - that enable users to use method engineering techniques to create 
custom processes. The O-MaSE metamodel defines the key concepts needed to design and implement 
multiagent systems while the O-MaSE method fragments include the actual tasks that are performed and 

the work products that are produced. The O-MaSE guidelines define how the method fragments are 
related to one another and thus how customized processes can be built. 

aT3 has five components that are integrated into a single tool. These components are the graphical 
editor, the process editor, the verification framework, and the code generation facility. 

4.1   Graphical Editor 
aT3 supports the graphical editing of models that define all the concepts defined in the O-MaSE's 
metamodel. aT3 supports drag-and-drop addition of icons and ensures the only appropriate connections 
are made between the various kinds of icons. aT3 also provides pop-up panels for editing the internal 
detail of the various concepts such as parameters, etc. The Graphical Editor supports the O-MaSE models 
described in Section 3.3.2. 

■ Goal Model. This is an AND/OR goal tree structure. Goals in the Goal Tree may have any 

number of attributes and goals may have precedence and triggering relationships between 

them. (We may also want to add the notion of events that occur during a goal and trigger 

other goals.) 

■ Agent Model. An Agent Class Model defines the agent classes and sub-organizations that will 

populate the organization. Agent Models are static models that may include agents, actors, 

organizations, roles, capabilities, and protocols. Relationships between the various entities 

include: inheritance, possesses, plays, and requires. 

■ Role Model. A role model is a diagram representing all the roles in the organization along with 

the goals they are achieving and the interaction protocol existing in the organization. Role 

http://macr.cis.ksu.edu/ 
http://www.eclipse.org/ 
http://www.eclipse.org/epf/ 
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Models are static models that may include goals, roles, actors, capabilities, and protocols. 

Relationships between the various entities include inheritance, require, and require. 

■ Organization Model. The Organizational Model shows the interaction between the 

organization and the external actors. Organization Models are static models that may include 

actors, organizations, goals, and protocols. Relationships between organizations and goals are 

modeled via the requires relation. 

■ Protocol Model. A Protocol Model consists of Protocol Diagrams as specified in AUML. It 

describes sequences of messages sent between, roles, organizations, and external actors. It also 

includes alternative and looping structures. 

■ Plan Model. An agent plan model is based on Finite State Automata. Includes states and 

transitions. Use Capabilities/actions within states and on transitions. 

■ Capability-Action Model. PA Capability includes three levels of capabilities; Capabilities, 

Actions, and Operations. Capabilities may either be (exclusively) composed of a Plan or of other 

Capabilities/Actions. 

■ Domain Model. A domain model contains the definition of the environment in which the 

multiagent system is situated. It consists of a set of Environment Objects (which may include 

agents), their attributes, and their relationships. The model may also include Environment 

Policies, which define the processes and principles that govern the multiagent system. 

■ Policy Model. A policy model is a document containing all the policies applicable to the system. 

A screen shot of the aT3 is shown in Figure 41. On the left side of the screen, the Eclipse Package Explorer 
allows the user to organize and store O-MaSE models in projects. Generally, subdirectories within 
projects refer to sub-organizations in the system design, thus the Package Explorer file structure mimics 
the hierarchical structure of the system. The model shown is an Agent Class Diagram. The icons shown in 
the Palette on the right side of the screen show the valid components and relations that may be added 
to the model. To add a component to the model, users simply click on the component in the Palette and 
then click where they want to place the component in the model. Once the component has been placed 
in the model, it may be edited or moved to another location. The protocol components are slightly 
different in that they are added between two actors or agents. To add a protocol, the user first clicks on 
the protocol icon in the Palette and then on the two actors/agents that participate in the protocol. After 
placing the protocol, the name may be edited. To add relationships between model components, the 
user also clicks on the desired relationship in the Palette and then click on two components already in 
the model. Relationships have fixed names that may not be edited. 

The notation used in the aT3 models is very simple and consistent. Model components are generally 
represented as a box with several compartments. The top compartment specifies the type of component 
and the component name. Thus, in Figure 41, agent classes are represented as boxes with an «Agent» 
type. In the O-MaSE notation, guillemets are used to enclose type designators and should not be 
confused with UML stereotypes. Directly below the type designation is the name of the agent class. Two 
unique component types are external actors and protocols. External actors are represented using a stick 
person figure with the name of the actor directly below the figure, while a protocol is represented as an 
arrow between two components (e.g., roles, agents, organizations, etc.). The name on the arrow is 
editable and represents the name of the protocol, which can be defined in detail via a protocol model. (A 
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Figure 42. Screenshot of APE 

similar arrow notation is used in the protocol diagram to represent individual messages and in the goal 
diagram to represent individual events.) Relations between components are represented using 
traditional object-oriented notation for similar concepts such as inheritance and aggregation, and open 
headed arrows with fixed labels for O-MaSE specific relationships. In Figure 41, the «plays» arrow is used 
to define which agents can play which roles, the possesses arrow defines which agents possesses which 
capabilities, and the «requires» arrow is used to define which roles require which capabilities. 

As shown in Figure 41, aT3 also supports embedding of relations to simplify the graphical layout of 
models. For instance, the PCmember agent class has two embedded relations: «plays» Assigner and 
«plays» Partitioner. This embedding represents the situation where the model also contains two 
additional roles and relationships between the PCmember and those two roles. In aT3, the user may 
toggle between the embedded mode and the full mode which shows all relations explicitly. 

4.2   Process Editor (APE) 
The agentTool Process Editor (APE), a tool for creating and customizing processes for multi-agent system 
development. APE is an Eclipse-based8 plug-in which uses EPF to facilitate the management of tailored 
agent-based processes based upon the O-MaSE Process Framework (hereafter, simply referred to as 
O-MaSE) (Garcia-Ojeda, DeLoach, & Robby, 2008). O-MaSE provides the concepts, rules, methods 
fragments, and guidelines needed by process engineers to assemble O-MaSE compliant processes, while 
APE provides the infrastructure to develop, verify, and maintain O-MaSE compliant processes. 

http://www.eclipse.org/ 
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The overall goal of APE is to facilitate the design, verification, and management of customized 
agent-based O-MaSE compliant processes. APE is an Eclipse-based plug-in built on top of the Eclipse 
Process Framework, which in turn, relies on the Eclipse Modeling Framework (EMF), the Graphical 
Editing Framework (GEF), the Web Standard Tools (WST), and the Common Properties User Interface 
(Ul). It also uses the open source components JTidy and Lucene along with specific EPF tool components 
such as UMA services9. 

Figure 42 shows a screenshot of APE. APE can be seen as an aggregation of five basic views: a Library 
view (Window 1), a Process Editor (Window 2), a Task Constraints view (Window 3), a Process 
Consistency view (Window 4), and a Process Management view (Window 5). It is important to note that 

Window 1 and Window 2 use base EPF functionality while the rest of the windows were developed 
specifically for APE as an Eclipse plug-in. APE is also loosely integrated with the agentTool III10 (aT3) 
-development environment (Window 6). The integration of APE and aT3 allows designers to analyze, 
design, and implement multiagent systems while following the process as defined in APE. Next, we 
introduce the main features of APE. 

4.2.1 Customizing O-MaSE Content 

As mentioned before, APE directly uses EPF components such as EPF Authoring. EPF Authoring provides 
the basic tools required for process engineers to manage method content elements such as roles, tasks, 
work products, guidance, content categories and processes. For instance, if a development team may 
need to perform tasks that are not defined in the current O-MaSE method fragment repository (see 
Window 1), process engineers simply right-click on the label "Tasks" and then specify the main attributes 

of the new tasks (i.e., general description, steps, roles, work products, and guidance). For example, in 
Window 1, we show the result of adding the new_fo5/rtask in the repository. 

Because processes should be assembled logically, process engineers can also specify how method 
fragments are related to one another by adding/modifying task pre- and post-conditions. To modify 
these conditions, the process engineer selects a task from Window 1 and modifies an existing condition 
or specifies new conditions in Window 3. Preconditions are specified by selecting work products from 
the Optional Inputs(s) list in Window 3, and including them in the logical equation (e.g., 

[work_product_l A worl<_product_2) v work_product_3). APE automatically verifies the precondition 
before it is added into the Precondition(s) list. This verification was developed using Another Tool for 
Language Recognition11 (ANTRL). Window 3 shows the precondition (i.e.. Role Model and Capability 
Model) specified for the new_task task. 

The purpose of pre- and post-conditions is to help process engineers in the process of verifying the 
consistency of their customized processes. APE also provides a mechanism for automatically verifying 
customized processes (Window 2). Any problems found during this verification steps are displayed as 
processing inconsistencies in Window 4. In this case, adding the new_task task to the Testl process (not 
shown) results in an error since the new_task task was inserted before the Goal Refinement task, 
resulting in the inconsistency shown in Window 4. 

4.2.2 Engineering Custom Processes 

In Window 2, the software development team - perhaps supervised by a process engineer and/or a 
project manager - has the challenge of creating a "tailored" or "customized" process. Such processes 
define sequences of tasks, which are performed by roles that produce specified work products. These 

http://www.eclipse.org/epf/composer_architecture/ 
http://agenttool.i 
http://antlr.org/ 
http://agenttool.cis.ksu.edu/ 
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Figure 43. Verification Framework 

processes are used to describe the desired lifecycle for a specific project (e.g., waterfall, incremental, 
iterative, etc.). 

To create a new custom process in APE, process engineers must select the "Process" label, then 
right-click on the "Delivery Processes" label (see Window 1), and finally, specify a name for the process 
and choose O-MaSE as default method library. Once the new process has been created, the process 

designer can add children (phases, iterations, activities, tasks, or milestones) to it in Window 2. Children 
are added by right clicking on the process (or other child) name in Window 2 and then selecting a phase, 
iteration, or task from the method library. 

4.2.3    Managing Custom Processes 

To help manage custom processes, APE provides three basic functionalities via the Process Management 
view shown in Window 5. First, it provides the function for uploading documentation regarding the 
requirements for the given project. Second, it integrates aT3, so managers and developers can directly 
view and edit the work products expected for each task. Finally, APE also provides support for entering 
and tracking budget and scheduling information using Earned Value Analysis (EVA) (Fleming & 

Koppelman, 2006). The core concept of EVA is earned value, which refers to the cost of work performed 
at a given point according to a process development plan (American National Standards Institute, 1998). 
Thus, the foundation of the EVA is a good work breakdown structure with clearly defined tasks (see 
Window 2), each of which has been assigned a cost and a task completion date. 

4.3   Verification Framework 
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The aT Verification Framework gives designers a way to maintain consistency between their O-MaSE 
models, based on a predefined rule set. Since processes are customized, this rule set can also be 
customized by turning on and off certain rules. Each time a model is saved, the Verification Framework 
checks that document against all related documents in the current project based on the currently 
enabled rules. Verification problems are show to the user through the Eclipse Problems panel similar to 
compiler errors and warnings as shown in Figure 43. In this project, there is just a simple goal model, 
which is incorrectly drawn. As shown in the Problems panel, Goal3 is not connected to the rest of the 
goal in tree form. Also, since the role model has not yet been defined, the Verification Framework 
displays the warning that none of the leaf goals (Goall, Goal2, or GoalB) have been assigned to any roles 
for achievement. 

4.4 Metrics Computation Component 
aT also provides a suite of metric computation tools that help developers analyze their system at design 
time (Robby, DeLoach & Kolesnikov, 2006). One of those metrics. System Flexibility, allows designers to 
predict the ability of the system to reorganize to overcome individual agent failures. Based on the results 
of the metrics, designer may redesign their systems and rerun the metrics to get the desired result. Since 
many of the metrics use state-based exploration, aT3 includes the Bogor model checker (Robby, Dwyer 
&Hatcliff, 2003). 

4.5 Code Generation Facility 
Automatic code generation is also available in aT3. Currently, the only platform targeted has been JADE 
(Bellifemine, Caire & Greenwood, 2007). However, we have created a framework consisting of the 
Organization, Operation, Social, and Environment levels. At the Organization level, agents and roles are 
chosen for achieving specific goals. At the Operation level, agents achieve goals by performing actions 
based on their available capabilities. At the Social level, agent's interactions are captured via messaging, 
while at the Environment level, the knowledge of object types and relationships are generated. Due to 
the detail of the O-MaSE models, the aT3 JADE generator is capable of generating 100% of the code 
necessary to create functional JADE systems. 

4.6 Availability 

APE is packaged with aT3as an Eclipse plug-in and is available for download from the aT3 website12. The 

website includes download and installation procedures, as well as a complete set of online tutorials for 

most aT3 and APE functions. 

http://agenttool.cis.ksu.edu/ 
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5   PREDICTIVE METRICS FOR MULTIAGENT SYSTEMS 

Designing correct models for multiagent systems is a tedious task. This task becomes vastly more difficult 
as the complexity of the system increases. The designer has to take the requirements of the system and 
design a system that is flexible enough to handle failure, but efficient enough to accomplish the task in 
an acceptable time frame. The ability to adapt to failure can be a principle reason for using a multiagent 

system. However, it is this inherent flexibility of multiagent systems can lead to unwanted emergent 
behavior. The goal in this part of the research project was to define a set of metrics that could be used at 
design time to predict the behavior of the multiagent system in order to restrict unwanted behavior. 

Our goal was to use design knowledge required for OMACS-based systems in order to predict the 
behavior of the system. Specifically, we focused on four key OMACS concepts for this investigation: 
goals, roles, agents and capabilities. The goal model provides an abstract representation of the state of 
the system with temporal constraints. As the number of goals, roles, agents and capabilities increase, the 
number of interactions can exponentially increase. This makes human analysis very tedious and time 
consuming as the organization size increases. Therefore, automation is needed in the analysis of these 
models and how they interact with one another. 

5.1   Capturing Traces for Metric Computation 
Metrics are a powerful tool that can be used in all phases of software development. The design of a 
metric suite requires the definition of a framework for metric integration, which makes it easier to write 
new metrics. The framework allows users and experts to define metrics for use it the development 
process. Useful metrics can then be shared with other developers in the multiagent field. Additionally 
our metrics provides the baseline that allows us to apply abstractions to the system. These abstractions 
can leverage the ideas from abstract interpretation in order to create much more efficient methods of 
proving properties of our models. 

Due to the use of the GMoDS goal model, which allows the triggering of new goal instances based on 
events that occur during system operation, an OMACS-based system has a possibly infinite set of goals. 
This possibly infinite number of goals poses a problem for model checking systems, as the state space of 
the system will be infinite and the model checker will never terminate. As the number of events in the 
system increases, the time to model check will increase exponentially. To make the possible number of 
goals in the system finite, we provide the user with the ability to specify event bounds (specified in the 

form of a range, m .. n where 0 < m < n) that limit the number of times a specific event may occur. 

5.1.1 Trace Types 

There are three types of system traces that we are interested in: Goals (G), Goals-Roles (GR), and 
Goals-Roles-Agents (GRA). The G traces reveal how many ways there are to achieve the top-level goal 
without regard for their assignment to roles and agents. Adding the roles to the traces (resulting in GR 
traces) includes the assignment of the various roles that can be used for the achievement of each goal. 
Finally, the addition of the agents in the traces (yielding GRA traces) shows which specific agent was 
playing the role for when the goal was achieved. 

5.1.2 System Traces 

As described in Section 1.3.2, many event types may occur and be observed by the system. In this work, 
we limit the events of interest to those specified in Table 9. For this work, we define a system trace as a 
finite sequence of these such events e0 ... e,, that leads to the achievement of the top level goal (C(g0)). 
The set of all unique traces is denoted as Tsucc- 
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Table 9. Events and Properties of Interest 

System Events|Definition 

C(gJ goal gi has been completed (achieved) 

F(g,) goal gi has been completed (failed) 

T(gi) goal gi has been triggered. 
Afa^r^gk) agent ai has been assigned role fjto achieve goa gk- 

In the traces, we actually capture system events as tuples, <EventNumber, Event>, where the 
EventNumber is an Integer and it denotes the time when the event happened and the Event is the event 
that happened. The event must be a goal achievement (C(gi)) or a goal trigger (T(gi)). 

5.1.3   Generating System Traces via Model Checking 

We use the Bogor model checker to generate system traces. In general, the state of the system includes 
the state of all the goal instances in the system; each goal is typically either preceded, active, achieved, 

or obviated. In each system state, Bogor can take one of two actions: create new goal instances or 
achieve existing goals. New goal instances are created via the triggers relation. Thus, if a goal has been 
assigned to an agent and it has a trigger relation from it to a second goal, a new instance of the second 
goal may be created if the upper bound on the trigger has not been reached. Trigger relations have 
lower and upper bounds that determine the minimum and maximum number of times that the trigger 
must/can be executed. If the lower bound has not been reached, then the minimum number of triggers 
is automatically executed, resulting in possibly several new goal instances. If the maximum has not been 
reached, then the trigger may be executed resulting in the creation of a new goal instance. To allow 
backtracking, we also keep track of which goals were added to reach the current state, the state of the 
goal instances in the previous state, and the event that caused the state transition. After each transition, 
Bogor checks to see if the top-level goal of the system has been achieved. If the top-level goal has been 
achieved, then no more actions are executed and the current trace is output. 

5.1.3.1   The Effect of Policies on System Traces 

The effect of arbitrary system policies can have a dramatic effect on system traces. These policies are a 
problem when the model checker is matching states. To illustrate the problems that can occur, we 
present a simple example. Assume we have a simple goal model with a single parent goal A, which is 
AND-decomposed into three sub-goals: B, C, and D. In addition, assume we have the policy 

C(B) AA(a,,r,,C) => -lAfar^) 

The policy states that if goal C has been achieved and goal B has been assigned to an agent, then the 
system cannot assign goal D. The problem with a policy such as this is that when model checking, the 
output of the model checker is dependent on the path the system 
took to get to the current state. If the model checker achieves goal D, 
then goal A is achievable, but if the system achieves B first then goal 
D is unachievable. To handle this type of situation, we produce two 
types  of  output.   In  the  first  case,   we   assume  order  of  goal 

achievement is not important and the output consists of the set of all 
possible goal sets that achieve the top-level goal. As the output is a 
set based, it loses information about the order of goal achievement. 
However, the output is considerably smaller and metric computation 
can be much faster. In the second case, the output is in the form of a 
tree that captures each state and the transitions between the states. 

Table 10. Achievement Traces 

Achieved Assigned 

{} {A, B, C, D} 

{C} {A, B, D} 
{B,C} {A,D} 

{A, B, C, D} {} 
{B} {A, C, D} 

{B,C} {A,D} 

{A, B, C, D} {} 
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This output, while much larger, retains the information related to the ordering of events and goal 

achievements. If we have a system with policies, we can run the policies against the second output and 

prune traces that violate a policy. 

5.1.3.2 Optimizing Trace Generation 

The efficiency of our trace generation algorithm needs to be reasonable. If the trace generation process 
takes too long, the results will be of little benefit. The original algorithm as described above was slow, 

about 80 transitions per second. 

Therefore, we started looking for ways to optimize the system. The results are two optimizations that 
lead to an order of magnitude increase in efficiency. After implementing the optimization described 
below, we increased our trace generation speed from 80 to 600 transitions per second. We made two 
significant optimizations: (1) not allow the system to generate traces with unnecessary or redundant 
goal achievements, and (2) abstracting away the ordering of the events that created goals. 

5.1.3.2.1  Unnecessary Achievements 
An OR-decomposed goal becomes achieved as soon as one of its sub-goals is achieved. Thus, we can use 
this definition to keep from generating traces in which more than one of the children of an 
OR-decomposed (disjunctive) goal are achieved. Once a sub-goal of an OR-decomposed goal has been 
achieved, we say that all other children of the OR-decomposed goal are obviated, and thus not assigned 
for achievement. We optimize the traces by not including obviated goals when we are generating the 

state identifier. 

5.1.3.3 Symmetric Instance Tree Matching 

The second optimization was required to simplify the checking of symmetric goal instance trees. 
Symmetric goal instance trees are defined as two instance trees that are identical except for the 
parameter values of the goal instances in the tree. This is important to reduce the amount of model 
checking done. During system operation, while goals are created via a sequence of event triggers, when 
generating traces, we do not keep track of the order of events that brought us to the current state of the 
goal instance tree. For example. Figure 44 and Figure 45 show two symmetric goal instance trees. In the 
first tree, event A occurred followed by event B while in the second tree, the order of the events was 
reversed. In both trees, one of the Sweep Area goals has been achieved. Thus, disregarding the 
parameter values, we see that these trees are identical. 

The method used to identify this situation involves a bottom up generation of unique identifiers for 
elements of interest in the current state. The elements of interest are related to the type of trace we are 
generating: G, GR, or GRA. G traces only require goal instance for the elements, while the GR 
combines the goal and role, and the GRA combines the goal, role, and agent. When an element is 
encountered, the lookup table is checked to see if a unique identifier has been defined for it. If so, the 
stored unique identifier is returned. If not, a new unique identifier is returned and the element value and 
unique identifier pair are added to the lookup table. 

The element value consists of the concatenation of information related to a goal instance, which 
includes goal, role, agent, and the state of the goal. The GMoDS execution model defines that each goal 
instance is in exactly one state at a time: preceded, active, achieved, or obviated. For example, the 
unique identifiers for each element in Figure 44 and Figure 45 are shown Table 11. For each element 
containing a leaf goal, the element value (the concatenation of the goal, role, agent, and goal set) is 
serialized and used to look up the unique identifier. For example the Mop Area(A) and Mop Area(B) goal 
both map to Mop Area, Active, which has the unique identifier 1. For each element containing a parent 
goal, a number pair related to each of its children is appended. The number pair consists of two values: 
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number of matching children and the unique identifier, (number of matching elements, unique 
identifier). For example, for the Clean Tile (B) goal in Figure 44, the initial element value is Clean Tile, 
Active; however, since it has two children, the unique identifiers of each of its children are appended 
resulting in the element value of Clean Tile, Active, (1,1) (1,3). Thus, the goal has two children, the first 
has once instance and the unique identifier of 1, while the second also has one instance with a unique 
identifier of 3. 

Figure 44. Instance Tree A 

( Clean Floor j 
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/ 
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[ Role: Sweeper J 

Figure 45. Instance Tree B 

Our approach provides us several properties that we can leverage for increased efficiency. First, multiple 
instances of a goal map to the same unique identifier. Second, different instances of the same child goal 
- if different in role, agent, or state - map to different unique identifiers. Finally, state comparison can 
now be done in constant time. And, since state comparison is performed at every transition, performing 
it in constant time makes a huge impact in model checker efficiency. 
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Table 11. State Identification Table. 

Unique Identifier Element Value 

0 Pickup Area, Active 

1 Sweep Area: Sweeper, Achieved 

2 Sweep Area, Active 

3 Mop Area, Active 

4 CleanTile, Active, (1,1) (1,3) 

5 CleanTile, Active, (1,2) (1,3) 

6 Clean Floor, Active, (1,4) (1,5) (1,0) 

5.1.4   Adding Goal Instantiation via Triggering 

A shortcoming of our initial work on our flexibility metric (Robby, DeLoach & Kolesnikov, 2006), was the 
lack of support for the creation of new instance goals via goal triggering. However, goal triggering was a 
critical part of the goal execution model developed for GMoDS-based systems. To incorporate goal 

triggering, we decided to use the existing implementation of the GMoDS execution model, which we use 
to track the current state of the system goals at runtime. The benefits of using our existing execution 

model implementation was that it 

(1) already included goal triggering, 
(2) ensured that the goal model state in our model checking would correspond exactly with the goal 

model state in implemented systems, and 
(3) is supported by the agentTool development environment for designing GMoDS goal models that 

could be incorporated directly into the GMoDS execution environment. 

However, the GMoDS execution model had one drawback for use in model checking; it simply 
maintained the current state of the goal model, which did not allow us to perform typical model 
checking operations such as backtracking and state comparison. Therefore, we extended the GMoDS 

execution model to include the ability to 

(1) backtrack from the current state 
(2) store incremental changes in the state 
(3) quickly compare states (with symmetric abstraction) 
(4) enumerate events (achievement and triggers) 
(5) select events to pursue 

5.2   The Occurrence Metric 

The definition of Tsucc allows us to measure how often a specific design element (here a goal, a role, or an 
agent) was used in a successful achievement of the top-level goal. We can therefore infer information 
about a specific element by counting the number of traces in Tsucc in which it occurred. Thus, for 
instance, we define the Occurrence, O, of a design element e is defined as 

I{t|t6 Tsucc A £.contams(e)}| 0(e) 
I Tsucc I 

(18) 

The objective of counting occurrences is to identify the design elements that lie on the extremes of the 
occurrence spectrum. That is, the design elements that occur in almost all successful traces as well as 
those that occur in very few, or none, of the successful traces. The goal is to identify design flaws or 
inefficiencies that, if addressed early in development, can improve system performance with little 
additional cost. 
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5.2.1 Goal Occurrence Extremes 

The two extreme cases of design elements occurrences are very interesting. In the first situation, a 
design element occurs in the maximum (or almost maximum) number of traces. Thus 0(e) = 1, or very 
close to it. In the second situation of interest, the design elements is used in a minimal number (or very 
few) successful traces. This indicates that the design element is seldom required in successful traces. 
Each of these situations is discussed in more detail below. 

5.2.1.1   Maximal Traces 

Design elements that appear in the maximal number of traces are the most needed and the least 
restricted design elements of the system. When these design elements are not achievable, then it may 
no longer be feasible for the system to achieve the goal of the system. The system is definitely not 
feasible when the design element is needed in 100% of the traces and there is a failure related to that 
design element. 

5.2.2 Floor Cleaning Example 

An example multiagent system is the Cooperative Robotic Floor Cleaning Company (CRFCC) as described 
in Section 2.3.2. Slightly modified versions of the Goal, Role, and Agent Models are shown in Figure 46 - 
Figure 48. The number of times each goal occurs based on the G set of traces is shown in Table 12. As 
we can see DivideArea and PickupArea are used in the maximal number of traces, and thus if these goals 
cannot be achieved, our entire system will fail. Goals that appear in a minimal number of traces are 
generally restricted by policies, precedence, or triggering. They will only occur when all of the restrictions 
are met, or the right set of events happen. If the system designer expects these goals to occur in more 
traces, it may indicate a design flaw that the designer should address. 

5.2.2.1   Goal, Role, and Agent Occurrence 

Next, we include the Role Model (Figure 48) by looking at the GR set of traces, the results of which are 
shown in Table 13. Notice that six different roles that are defined in the model and in general, the 
introduction of roles can cause the goal occurrence of any particular goal to increase or decrease. In this 
example, each goal that occurred in the G traces also occurred in the GR traces. Thus, we know that 
each goal is achievable by some role in the model. We can also see that each role occurs in the traces, 
which shows that each role satisfies some goal in the model. 

The final type of model to incorporate into the traces is the Agent Model, resulting in the GRA set of 
traces. Figure 48 shows a system design with five different types of agents. Each agent type possesses a 
set of capabilities, making them capable of the roles required to achieve the system goals. 

The occurrences of the various goals, roles, and agents from the GRA traces are shown in Table 14. We 
can see that Vacuum Area goal, the Vacuumer role and Agent 5 do not occur in any traces. If we carefully 
inspect the Role and Agent Models, we can see that the Vacuum Area goal requires the Vacuumer role, 
and the Vacuumer role requires the Vacuum and Sweep capabilities; however, we have no agents that 
possess both of those capabilities. The design error is in this entire chain of dependencies between the 
goals, roles and agents. The best way to correct the problem is application dependent. For example, it 
may be the case that the goals and roles may not be changed leaving only the Agent Model to be 
modified. Therefore, we can modify the Agent model to allow an agent type to be capable of playing the 
Vacuumer role. In our new Agent Model as shown in Figure 49, Agent 5 has been given the additional 
capabilities of Sweep and Move. The results of this design change are shown in Table 15 where we can 
see that the Vacuum Area goal, the Vacuumer role and Agent 5 occur in traces of the modified system. 
Notice also that the total number of traces (ways to achieve the top level goal) has increased. 
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Table 12. CRFCC Goal Occurrences 

Goal Occurrences 0(g) 
Mop Area 2 0.5 
Clean Tile 2 0.5 

Sweep Area 2 0.5 
Vacuum Area 2 0.5 
Divide Area 4 1.0 
Pickup Area 4 1.0 

Table 13 . Occurrences in Goal-Role traces 

Goal Occurrences O(g) Role Occurrences O(r) 
Mop Area 2 0.5 Mopper 2 0.5 
Clean Tile 2 0.5 Sweeper 2 0.5 

Sweep Area 2 0.5 Vacuumer 2 0.5 
Vacuum Area 2 0.5 Organizer 4 1.0 
Divide Area 4 1.0 Pickuper 4 1.0 
Pickup Area 4 1.0 

Table 14. Occurrences in Goal-Role-Agent traces 

Goal Occurrences O(g) Role Occurrences O(r) Agent Occurrences O(a) 
Mop Area 2 0.67 Mopper 2 0.67 Agent 1 3 1.0 
Clean Tile 2 0.67 Sweeper 2 0.67 Agent 2 3 1.0 

Sweep Area 2 0.67 Vacuumer 0 0 Agent 3 1 0 
Vacuum Area 0 0 Organizer 3 1.0 Agent 4 2 0.67 
Divide Area 3 1.0 Pickuper 3 1.0 Agent 5 0 
Pickup Area 3 1.0 
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Table 15 . Occurrences using updated Agent Model 

Goal Occurrences 0(g) Role Occurrences 0(r) Agent Occurrences O(a) 
Mop Area 6 0.67 Mopper 6 0.67 Agent 1 8 1.0 
Clean Tile 6 0.67 Sweeper 6 0.67 Agent 2 8 1.0 

Sweep Area 6 0.67 Vacuumer 4 0.5 Agent 3 2 0.25 
Vacuum Area 4 0.5 Organizer 8 1.0 Agent 4 6 0.67 
Divide Area 8 1.0 Pickuper 8 1.0 Agent 5 5 0.63 
Pickup Area 8 1.0 

5.2.2.2    Maximal traces 

Table 15 also shows that several goals, roles and agents are in the maximal number of traces. For 
example, the Divide Area and Pickup Area goals are in all of the traces. Therefore, if either of these goals 
cannot be achieved then the system cannot achieve the top-level goal. Therefore, it would behoove the 
designer to focus special attention on these areas as a failure there would surely cause total system 
failure. 
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Appendix A Appendix A. O-MaSE Definition 

7   WORK UNITS-TASKS 

7.1   Model Goals 
Purpose Transform initial system requirements into a set of structured system goals. 

Steps Identify Goals. The aim of this step is to capture the essence of an initial set of 
requirements. That is, the Goal Modeler extracts scenarios from the initial 
specification; and then, the Goal Modeler describes the goal of each particular 
scenario. 

Decompose Goals. The Goal Modeler must structure/decompose the goals into a 
Goal Model. The Goal Model is organized as a tree, with the top-level goal 
encompassing the overall goal of the system, while lower-level goals decompose the 

higher-level goals. In order to complete this step, the Goal Modeler must accomplish 
the next two sub-steps: 

Identify the overall system goal. It is often that a single system goal cannot be 
directly extracted from the group of goals captured at step Identify Goals. In that 
case, the Goal Modeler must summarize'the highest-level goals into an overall 
system goal. Otherwise, the overall goal is placed at the top of the Goal Model. 

Derive Goals. Once the overall system goal is in place, goals may be decompose into 
new sub-goals. Each sub-goal must support its parent goal in the hierarchy goal and 
defines what must be done to accomplish the parent goal. If as result of the goal 
decomposition the sub-goals prescribe something that has to be done, the Goal 
Modeler has found the operations/functions that would be carried out by agents in 

run-time. Otherwise, the Goal Modeler will continue this step until any further 
decomposition would result in operations/functions instead of goals (i.e., the Goal 
Modeler prescribes how a goal should be accomplished). 

Logically Structure Goals. In this step, the Goal Modeler determines whether - in 
order to achieve a parent goal - it is necessary to achieve all its sub-goals or not. The 
first case is known as an AND-decomposition (conjunctive), and the latter is known 
as an OR-decomposition (disjunctive). That is, some parent goals in the Goal Model 
(see page 94 for more detail) may require that its children must be achieved (AND), 
while other goals may have alternative ways to be achieved (OR). 

Guidelines The initial system context, starting point of O-MaSE, is usually the system description 

or the software requirement specification with a well-defined set of requirements. 
These requirements tell the Goal Modeler the goals that the system must achieve 
and how the system should or should not behave based on the inputs to system and 
its current state. 

Because the goals encapsulate the critical system requirements, the Goal Modeler 
should specify abstractly - the goals - as possible without losing the spirit of the 
requirement. This abstraction can be achieved by removing detailed information 
when specifying the goals. Once the goals have been captured, they provide the 
foundation for further system analysis. 
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In order to map the goals in the Goal Model, the Goal Modeler must study the goals 
in terms of their importance and inter-relationships. Even though goals have been 
captured, they are of various importance, and level of detail. Then, the Goal Modeler 
must identify the overall system goal, which is placed at the top of the Goal Model. 
However, sometimes is the case that a single goal cannot be extracted directly from 
the requirements. In such case, the highest-level goals are summarized to create an 
overall system goal. Once the basic Goal Model is in place, goals may be 

decomposed into new sub-goals. Each sub-goal must support its parent goal in the 
hierarchy and defines what must be done in order to accomplish the parent goal. 
This process continues until the goals cannot be decomposed. Each level of 
decomposition can be either disjunctive or conjunctive. A disjunctive high-level goal 
is satisfied when a single sub-goal (child) is satisfied, whereas a conjunctive 
high-level goal is satisfied when all of its sub-goals (children) are satisfied. 

Finally, the identification and goal decomposition is a non-trivial, but critical, task. 
Thus, the Goal Modeler and the Domain Expert must interact a lot with the client in 
order to come out with a robust Goal Model. 

7,2   Goal Refinement 
Purpose This purpose of this task is to capture the dynamism associated with the system and 

the goals that it has to achieve. This is accomplished by defining all the relationships 
and attributes for each goal in the Goal Model. 

Steps Identify Goal Precedence. To capture the dynamic nature of the system, the Goal 
Modeler must identify the time-based relationship that exists between goals. This 
full or partial ordering of goal execution in the systems is called "Goal Precedence." 
The Goal Modeler must identify any time-based precedence relations between goals 
in the Goal Model. This "precedes" relation from goal x to goal y states that goal y 
cannot be pursued until goal x has been achieved. 

Identify Goal Instantiation Triggers. As events in the system occur, the Goal Model 
must dynamically adapt to those events. In this step, the Goal Modeler must identify 
the important events that may occur during the pursuit of a goal that would cause 
the creation of new, related goals. For example, if an event el can occur in the 
pursuing of goal gl that instantiates goal g2, we say that, gl triggers g2. 

Parameterize Goals. When a goal has been identified as a "triggered" goal, the Goal 
Modeler must generally parameterize the goal to allow the goal to take on a context 
sensitive meaning. Since the system generally cannot control triggering events, 
several instances of goal may be instantiated based on the specific situation 

surrounding the triggering event. For instance, assume that goal gl requires an 
agent to wait for some instructions. When the instructions arrive, the agent 
forwards this event (the receipt of instruction) to the organization, which causes the 
instantiation of a new goal of type g2. This new g2 instance carries out the 
instructions and thus must be parameterized based on the instruction received. If a 
second instruction arrives, a second instance of goal g2 is instantiated with its 
specific instruction as its parameter. 

Guidelines While it is typically more efficient to wait until a complete Goal Model is available, 

the nature of software development will generally necessitate going back and forth 
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between the Model Goals task and the Goal Refinement task. It is very important 
that Goal Modeler performing the Goal Refinement task be thoroughly familiar with 
the initial system context in order to understand the dynamic nature of the system. 

Because this task introduces the concepts of precedes, triggers, and parameterize. It 
is critical that the Goal Modeler understands the differences and relations between 
them. That is, goal precedence specifies that one goal must be achieved before 
another goal can be started while goal triggering is based on events that occur 
during system operation. A single instance of un-triggered goals is created at system 
initialization, while other triggered goals are created when specific events occur. 
Triggered goals should almost always be parameterized to define the context of the 
goal. The only time triggered goals are not parameterized is when the same goal 
should be re-accomplished. 

7.3 Model Organization Interfaces 
Purpose The objective of this task is to identify organization's interfaces with external actors. 

Steps Identify External Actors. The Organization Modeler must identify each external 
actor that may interact with the Organization (system). Such actors can be humans, 
other software systems, and hardware devices (e.g., robots). This information can be 
extracted from the initial system context documentation. 

Identify Interactions with External Actors. The Organization Modeler must identify 
and name all the possible ways that organization may interact with external actors. 
That is, the Organization Modeler must capture the flow of information coming into 
or out of the organization. This flow of information is captured by means of 
protocols between the organization and the external actors. The Organization 
Modeler may document the detailed description of each interaction (if available) by 

means of Protocol Models. If a detailed description is not currently available it may 
be added later as these protocols will be mapped to protocols later in the design. 

Identify the goal to be achieved by the organization. The Organization Modeler 
must identify the goal to achieve by the organization. In general, the goal to achieve 
is provided by the top-level goal depicted in the Goal Model. 

Guidelines Based on the information described on the initial system context, the Organization 
Modeler must extract all the details regarding the organization, the external actors, 
and their interactions. Thus, for every possible interaction, the Organization Modeler 
must depict them in terms of protocols. Protocols are represented by means of 
arrows. Arrow represents the flow of information from the initiator of the 
interaction to the responder. The initiator and responder of a protocol must be 
either an external actor or the organization. 

7.4 Model Roles 

Purpose This task focuses on identifying all the roles in the organization, as well as, their 
interactions with each other and with external actors. 

Steps Identify the roles required by the organization. In this step, the Role Modeler must 

identify the roles necessary to achieve the goals defined in the Refined Goal Model. 
An easy way to perform this step is to identify the basic skills required by the 
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organization to achieve its leaf goals. Generally, roles are identified to achieve 
specific leaf goals of the refined Goal Model. In general, the Role Modeler must 
define at least one role that can achieve each goal. However there are reasons 
where it is useful to have a single role for multiple goals or multiple roles to achieve 
a single goal. These reasons include convenience and/or efficiency. 

Identify the role's interactions. In order to carry out the interactions defined 
between the organization and the external actors, the Role Modeler must map these 
interactions down to specific roles. Also, it is often the case that several roles must 
interact in order to achieve their individual goals. In the Role Model, these 
interactions are simply identified as information flows, which are captured as 
protocols between roles or between roles and external actors. The Role Modeler 
may document the detailed description of each interaction (if available) by means of 
Protocol Models. 

Identify the role's capabilities. In O-MaSE a capability represents a way which 

agents can sense and effect the environment. Therefore, a role must require a 
capability in order to achieve an assigned goal. Thus, the Role Modeler must identify 
a set of capabilities required by roles to achieve the assigned goals. These 
capabilities may include hard capabilities such as sensors and effectors as well as 
soft capabilities such as software functions or plans. 

Guidelines The Model Roles task focuses on identifying the roles in the organization and their 
interactions with each other. 

All external actors from the Organization Model should show up as external actors in 
the organization's Role Model and the protocols between external actors and the 
organization must be mapped to protocols between external actors and the specific 
roles in the system. Thus, the Role Model is a refinement of the Organization Model. 

In addition, each leaf in the Goal Model must be assigned to a role in the Role that 
can achieve it, as denoted by the «achieves» designator in the body of the role. 
Thus, each role should achieve at least one leaf goal, although in general, a role may 
achieve multiple leaf goals. 

Because roles require capabilities in order to achieve goals, the Role Modeler must 
identify such capabilities. Basically, the required set of capabilities depends on the 
requirements of the goal. For instance, if role x achieves goal transport object; it is 
clear that role x would typically requires the capability of movement. 

7.5   Define Roles 

Purpose This task further refines the capabilities required for an agent to play a role, and 
the constraints and permissions that apply to the agents playing that role. 

Steps Role Description. In this step the Role modeler, must extend the roles' description 
in terms of the capabilities required by the role and the permissions and 
constraint associated with the role. Also, if needed, the Role Modeler may further 
refine a role by means of an internal set of sub-goals. 

Guidelines The capabilities are identified based on the goals that the role seeks achieve. 
Generally, a role requires at least on capability in order to achieve a goal. One 
approach to defining a role is to prescribe a specific plan to achieve that role. 
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Since plans are a type of capability that the role may require, this is typically 
carried out by defining a plan via a Plan Model and then creating a capability that 
performs such plan (see Model Capabilities and Model Plans tasks). 

Role refinement provides a less restrictive set of guidelines (in terms of sub-goals) 
on what has to be done in order to play the role. However, sub-goals do not 
prescribe any specific process. This model may be defined using the Model Goals 
and Refine Goals tasks as defined for organizations. 

Depending on the goal achieved, access permissions to certain resources may be 
granted to agents playing that role. 

7.6   Model Domain 
Purpose This task captures the objects,  relationships, and  behaviors that define the 

domain in which agents would sense and act. 

Steps Identify objects' types. The Domain Modeler must understand exactly what types 
of objects may be in the domain (environment). Such objects are defined simply 
via a name and a set of attributes. In O-MaSE, objects are closely related to 
object-oriented classes or types and do not represent object instances. All agents 
identified in the organization are also objects within the Domain Model. 

Identify the relationships between objects. Because the Capability Model needs 
to define the actions that an agent may perform upon objects in the domain, the 

Domain Modeler must identify all the possible relationships between the different 
objects in the domain and the agents. These relations determine which agent 
actions may affect which objects. 

Identify the principles and processes that govern the domain. Besides identifying 
objects and attributes, it is also important to identify the principles and processes 
that govern the environment. The principles and processes are defined in terms 
of autonomous processes that cause actions upon domain model objects. 

Guidelines The domain model is developed using traditional domain modeling or domain 
analysis techniques common to most object oriented development 
methodologies. 

In order to define the actions that an agent may perform upon then environment, 
it is critical that we understand exactly what types of objects may be in the 
environment and the attributes of those objects. 

In O-MaSE we use a simple Domain Model to model the objects upon which 

agents perform the basic actions of sensing and affecting the environment 
through interactions. Basically, the domain is a container of Objects, which can 
include Agents situated in the environment. All the objects in the domain are 
affected by physical Principles that are implemented by Processes. Objects are 
defined simply via a name and a set of attributes. Here, domain objects are 
actually more closely related to object-oriented classes or types than true object 
instances. 

The Domain Modeler should identify all possible objects that would be found in 
the environment (included agents). For each object, the Domain Modeler must 
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identify and document its attributes. Because objects share relationships within 
the environment, the Domain Modeler must identify and document such 
relationships. In some cases, such relationships can be exploited by means of 
capabilities (i.e., an agent may be able to manipulate some environment object, 
so there should be a relation between the agent and the object that can be used 
by some action possessed by the agent). 

In order to identify the principles and processes that govern the environment. 
Domain Modeler must identify any physical property that can be mapped into the 
Domain Model. For example, in detecting radiation, there is the well-known 
principle that the amount of radiation intercepted varies as the square of the 

distance between the source and the sensor (a sensor can be seen as an agent in 
this case). This relation can be defined by the following equation: 

o.rad 
radiation{x,y)= 2^ 

o-.ho, ^io.x - x)2 + (o.y-y)2 

7.7   Model Capabilities 
Purpose The Model Capabilities task defines the internal structure of capabilities that an 

agent possesses in order to sense and to act in the domain. 

Steps Because capabilities can be implemented as either actions or plans, there two 
ways to model capabilities: 

Actions: 

Define action signatures. The first step in defining actions is to identify the actions 

associated with each capability. That is, the Capability Modeler must define action 
signatures based on the proposed use of the capability in the system. Often, these 
actions are identified during the Model Plans tasks where the overall approach to 
achieve a goal are defined. In the plan, actions are identified and then assigned to 
specific capabilities. 

Define action effect. An action is defined as a single accessible operation via a set 
of pre and post-conditions over objects in the domain model. The preconditions 
determine whether or not the operation can be executed. If the preconditions do 
hold, the post-conditions determine the desired state of the world (objects in the 
domain) after the completion of the operation. Actions may also be defined as 
simple functions that do not directly affect objects in the domain; they are used to 
simply compute values based on set input parameters. 

Plans: 

Define Plan.    Plans are defined using the Model Plans task. 

Guidelines Capabilities can be used to define a plan or a set of actions that can be used by a 
plan to achieve some goal. 

Action-based capabilities are defined in terms of actions performed on the 
environment or as functions on a set of input values. The Capability Modeler can 
also use aggregation to compose capabilities using the actions defined by other 
capabilities. Also, the Capability Modeler can capture the capability of an agent to 
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send and receive messages. 

The Model Capabilities task also allows the designer to create new capabilities out 
of existing capabilities. For example, a robotic Rescue capability may be defined as 
a composed capability that uses the previous defined capabilities of Search, 
Pickup, and Communicate. Using aggregation, the Rescue capability has access to 
all the actions defined as part of the Search, Pickup, and Communicate 
capabilities. The actions from the sub-capabilities may be used directly by the 
agent possessing the Rescue capabilities. In addition, the Capability Modeler may 
define more complex actions in the Rescue capabilities using the actions of the 
sub-capabilities. 

7.8 Model Agent Classes 
Purpose The purpose of the Model Agent Classes task is to identify the type of agents that 

will participate in the organization. 

Steps Mapping roles to agent classes. If the O-MaSE process has defined a Role Model, 
the Agent Class Modeler defines specific types of agents based on the Roles that 
need to be played in the Role Model. The modeler may define a plays relation 
between agent classes and roles or may allow the capabilities of the individual 
agents to determine what roles it can play at runtime. 

Identify Capabilities. In this step, the modeler identified the capabilities 
possessed by the agent classes. These capabilities do not have to be fully defined. 
If a Role Model exists, the modeler needs to ensure that the agent classes defined 
to play specific roles possess all the capabilities required for those roles. In a 
system without a role model or in a system with predefined agent classes, the 
modeler may simply define the capabilities possessed by each agent class. 

Map protocols between agents. During this step, the Agent Class Modeler must 
identify the protocols in which agent classes must participate. These protocols are 
derived from the interaction of the agent's assigned roles, if assigned. 

Guidelines While the Agent Class Modeler makes the assignment of roles to agents, typical 
software engineering concepts such as coupling and cohesion should be used to 
evaluate the assignment. That is, agent can play a given role. 

Also, any protocol documented in the Role Model must be documented in this 
task. Also, each agent has to be attached to at least one. Because every agent is 
described in an abstract way (i.e., roles played, capabilities possessed, and 
protocol it participates in), the details of the design must be completed by means 
of tasks such as Model Protocols and Model Plan tasks. 

7.9 Model Protocols 

Purpose This task defines the interactions between either agents playing roles or roles. 

Steps Identify Interactions. The Protocol Modeler identifies interactions between either 

agents playing roles or roles. The protocols should already be identified in 
associated organization, role, or agent class models. Also, the Protocol Modeler 
must identify the constraints on the passing message between those entities (i.e.. 



agents or roles). 

Define Interaction Details. In this step, the Protocol Modeler must define and 
document the details of the messages that make up the protocol. The details of 
the protocol include message names and parameter types, the sequencing of 
messaging and any possible alternative sequences. 

Guidelines For each protocol identified in organization/role/agent class models, the Protocol 
Modeler must define individual Protocol Models. These protocols are typically 
modeled using models similar as UML/AUML Interaction Diagrams, which allow 
the Protocol Modeler to specify message sequence, alternatives, loops, and 
references to other protocols. 

Often, the system designers may wish to use pre-defined protocols such as the 
Request, Query, or Contract Net FIPA multiagent protocols defined at 
http://www.fipa.org/repository/. 

If a set of plans have alreacy been implemented that require the interaction of 
two agents/roles, the protocols defined must adhere to the constraints of the 
pre-existing plans. Obviously, an iterative process between defining protocols and 
plans may be used. 

7.10 Model Plans 
Purpose This task represents a mean by which agents can satisfy a goal in the organization. 

A plan can be seen as an algorithm for achieving a specific goal. Also, plans are 
made of several actions or sub-plans and may require interaction with other 
agents though some defined protocols. 

Steps Define actions. In this step, the Plan Modeler determines the actions necessary to 
achieve the goals of the system. These actions are then assigned to states within 
the plan. 

Capture message iterations. The Plan Modeler captures the messages either sent 
or received by an agent in carrying out the overall plan. These messages should be 
consistent with protocols defined between actions, organizations, roles, and 
agents in associated organization/role/agent class models. 

Guidelines Agent plans are created to achieve specific goals, or sets of goals. These plans may 
be associated with roles or agents via capabilities. 

Depending on the internal architecture chosen for each agent, we could develop 
multiple Agent Plan Models for each agent. This might be the case when we 
wanted a unique plan for each role an agent could play or if we could choose 
between multiple plans to achieve the same goal. In either case, the Agent Plan 
Modeler would be responsible for selecting the appropriate plans and interleaving 
their execution if required. 

Plans are typically modeled using finite state automata to specify a single thread 
of control that defines the behavior that the agent should exhibit. Plans specify 
both actions an agent can perform and messages an agent may send or receive. 
The interplay between the actions and interactions with external agents defines 
the overall plan. 
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7.11 Model Policies 
Purpose The Model Policies task defines a set of formally specified rules that describe how an 

organization may or may not behave in particular situations. 

Steps Identify system events of interest. The Policy Modeler must identify such events based on 
the following criteria: 

Event Definition 
Cfgi) Goal g, has been completed (achieved) 
T(gi) Goal g, has been triggered. 
Afa^gk) Agent a, has been assigned role rj to achieve goal gk. 

Identify properties of interest. The Policy Modeler must identify some properties that 
may be domain specific (only relevant to the current system), and others may be system 
properties such as the number of roles an agent is currently playing. 

Specify assignment policies. The Policy Modeler must specify policies concerning agent 
assignments to roles in order to constrain the set of possible assignments. This can reduce 
the search space when looking for the optimal assignment set. 

Guidelines Policies can be incrementally defined. That is, Policy Modeler can start defining policies by 
taking the Goal Model. Yet, it is recommended to wait until goals, roles, and agent has been 
defined. This is an important fact, because the Policy Modeler can use the information 
regarding the relation between goals, roles, and agents to document the rules that would 
govern the organization in running time. 

7.12 Model Actions 
Purpose This task captures the interactions performed by agents with objects within the 

environment. 

Steps Identify actions.   The modeler must first identify the actions that need to be 
performed by agents in the system. Actions are typically extracted from Protocol 
Models, Plan Models, or Capability-Action Models. The modeler may also examine 
the Domain model to determine likely actions that will need to be performed on 
domain entities. 

Define action signatures. Here, the modeler must define the name, and the input 
and output types of the action. Again, inputs may be extracted directly from the 
Protocol or Plan Models while outputs can be extracted directly from Plan 
Models. If these models are not available, the modeler must determine the likely 
inputs outputs required by the system agents. Note that as the modeler models 
the pre- and post-conditions in the next step, it is likely that new inputs and 
outputs may be identified. 

Define pre- and post-conditions. The modeler defines the action's pre- and 
post-conditions in terms of the actions effect on Domain Model entities. Actions 
may read and write accessible entity attributes defined in the Domain Model. 

Guidelines Actions may only be fully defined once at least one capability has been identified 
and the domain model created. The reason is that actions must be attached to a 
capability and they are defined over the domain model entities. 
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For simplicity of identifying actions, it is recommended that either the protocol or 
plan model be defined prior to actually identifying and defining the actions. This 
allows the modeler to see how the actions will be used. 

If a modeler is defining an action for a predefined piece of software or hardware, 
the action definition must be consistent with the software/hardware being 
modeled. In this case, the action definition may take place before a protocol or 
plan model is defined. 

For automated checking and verification, pre- and post-conditions should be 
specified formally. If no automatic verification tools are being used, the modeler 
may use pseudo-code or human language pre- and post-conditions. 

8   WORK UNITS-TECHNIQUES 

8.1   AND/OR Decomposition 
Typical tasks for which this is needed: Model Goals. 

Technique description: Some goals in the Goal Model may require that its children must be achieved 
(AND); other goals may have alternative ways to be achieved (OR). When constructing the Goal Model, 
the AND parent-children relation is represented using diamond notation and to represent and OR 
relation a triangle notation is used. Once the goals have been identified from the system requirements 
or from a Role Description Document, and the Goal Model has been created by decomposing each goal 
in sub-goals as required, representing them using rectangles, the goal to sub-goal relation can be 
modified using diamond notation to show the goals that require a composition of its children to be 
achieved, and leaving the rest as is, to represent the OR refined parent goals, which may have alternative 
ways to be achieved. For example, in Figure 50 we represent a Goal Model. The syntax uses standard 
rectangle notation with the keyword «goal». The aggregation notation is used to denote AND 
refined goals (conjunction), whereas the generalization notation is used to denote OR refined goals 
(disjunction). 

Deliverables: Goal Mode! 

■=<Q03l» 
1  Mam Goal 

«goal» 
1 1 1 Sub Goal 

"goal" 
1 2 Sub Goaf 

w^*. 
\, ̂  

«goal» 
1.2 1 Sub Goal 

«goai» 
1.2 2 Sub Goal 

«goal» 
1 1 3.1 Sub Goal 1 1 3 2 Sub Goal 

Figure 50. Goal Model 

8.2   Attribute-Precede-Trigger Analysis (ATP Analysis) 
Typical tasks for which this is needed: Goal Refinement 



Technique description: To complete the refined Goal Model, the goal to sub-goal relation, system 
requirements, and role definition are reevaluated to identify any possible way to optimize the Goal 
Model by including parameters in any appropriated goal. Also, the Goal Model is analyzed to identify 
subsets of goals that can be achieved at different times to allow the organization to work on one part of 
the tree at the time. For instance. Figure 51 depicts a refined Goal Model. Basically, a refined Goal Model 
introduces the relations of precedes and triggers. Precedes relation determines which goals must be 
achieved before a given goal may be attempted. This relation is mapped with the type designator 
«precedes». On the other hand, the triggers relation is similar to precedes in that it restricts specific 
goals from being pursued until a specific event occurs. For instance, assume that goal 1.1.1 triggers goal 
1.1.2 based on event e0(). Instead of requiring the system to achieve goal 1.1.1 before pursuing goal 
1.1.2, the trigger relation requires the system to instantiate a new instance of goal 1.1.2 when event eo() 

occurs during the achievement of goal 1.1.1. 

Deliverables: Goal Model. 
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1.1.32 Sub Goal 

Figure 51. Refined Goal Model 

8.3   Organizational Modeling 
Typical tasks for which this is needed: Organization Modeling. 

Technique description: This technique helps analyze the system in a top-bottom way, and both, 
inside-out and outside-inside. Create a diagram for the top goal in the Goal Model or for the top goal 
for a Role Identified in the Role Definition task. Identify each external actor that may interact with the 
Organization, integrate these actors to the diagram. Establish the relation between the Organization and 
the Actors setting and naming the Interaction protocols between them (see Figure 52). 

Deliverables: Organization Model 
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Figure 52. Organization Model 

8.4   Role Modeling 
Typical tasks for which this is needed: Model Roles. 

Technique description: Generally, for each leaf goal in the Goal Model, create a role that can achieve it. 
However, it might sometimes be useful to have a single role achieving multiple goals. Also, more flexible 
organization can be designed by having several roles achieving the same goal. Once each goal has at 
least one role that achieves it, identify the interaction between Role and other Roles and/or external 
Actors. Interactions with external actors can be derived from the requirements or from the Organization 
Model if provided. Add a protocol between two roles if they need to exchange some information (see 
Figure 53). 

Deliverables: Role Model. 
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Figure 53. Role Model 

8.5   Role Description 
Typical tasks for which this is needed: Role Definition. 

Technique description: Technique description: To perform a Role Description, the following actions can 
be performed for each role: 

Identify all the capabilities required by that role. Capabilities are identified based on the goals that the 
role can achieves. All roles should require at least one capability. 
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If needed, the role can be further decomposed into sub-goals. Intuitively, sub-goals provide guidelines 

on what has to be done in order to play the role. However, sub-goals do not prescribe any specific 

process. 

Identify the permissions. Depending on the goal achieved, access permissions to certain resources need 
to be granted only to agents playing that role. 

Deliverables: Role Description Document. 

Identify the constraints. Role Name Achieves Requires Constraints 

Role-1 Role-1 1.2.1 Sub Goal n.a. Add constraints here 

Figure 54. Role Description Document (excerpt) 

8.6   Agent Classes Modeling 
Typical tasks for which this is needed: Model Agent Classes 

Technique description: Once the roles have been identified, create at least one agent class having all 
the capabilities required to play each role. An Agent Classes is a template for a type of agent in the 
system and is analogous to object classes. An Agent class identifies the capabilities that it possesses. 
Each capability is designated by the type designator «capability». Agent classes can also be defined in 
term of the role they can play, denoted by the type designator «plays». Likewise, the «possesses» 
relation between agent classes and capabilities (denoted by the «capability» type designator) 
indicates the capabilities possessed by instances of that class of agent. Furthermore, the arrows 
represent interaction between agents and actors, and between agents (see Figure 55). 
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«Agent» 
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protocol 

Server-API 

Clrsnt 

«Agent» 
Agent-2 

«plays» Role-3 

1 .n             In 
I—protocol  

«Agent» 
Agent-3 

<play5» Role-4 

«possesses> 

«capability» 
Capability-1 

Figure 55. Agent Classes Model 

Deliverables: Agent Classes Model. 

8.7   Protocol Modeling 
Typical tasks for which this is needed: Model Protocol 

Technique description: Once the interactions between agents or roles have been identified, the next 
step is to follow the current AUML protocol diagram specification (Odell, Parunak & Bauer 2001). Using 
this technique we map the agent(s)/role(s) participating in a protocol, as well, the messages passed 
between them (see Figure 56). 
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Figure 56. Protocol Model (simple example) 

Deliverables: Protocol Model. 

8.8   Capability Modeling 
Typical tasks for which this is needed: Model Capabilities 

Technique description: This technique is based on traditional class diagrams with the particularity that a 
Capability Model may include three types of classes: Action, Protocol, and Plan. An action capability is an 
atomic ability an Agent may possess. A protocol capability is a set of steps and conditions under certain 
actions are executed. A plan capability is a set of capability actions and protocols that is defined in order 
to achieve one or more goals. Basically, a Capability Model defines capabilities in terms of other 
capabilities as well as atomic actions (see Figure 57). 
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Deliverables: Capability Model. 

Figure 57. Capability Model 

8.9   Plan Specification 
Typical tasks for which this is needed: Model Plans. 

Technique description: This technique captures actions and protocols used by an agent to achieve a 
goal using a Finite State Automata (FSM). This technique is based on traditional state diagrams and 
consists of state and transitions representing the internal state and communications protocols of an 
agent (see Figure 58). 
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Figure 58. Agent Plan Model 

Deliverables: Agent Plan Model. 

8.10 Action Analysis 
Typical tasks for which this is needed: Model Actions 

Technique description: The Action Model is used to depict the different actions that an Agent can 

perform, and also a text document is included to define any pre and post-condition an action may have. 
Each action is labeled with the type designator «Action » and the attributes are also defined in the 
notation. Furthermore a file with the pre and post condition for each action is documented. As result the 
Action Model work product is obtained (see Figure 59). 

«Action» 
A1 

send(message, address) 

Al: 

Post: 

send(message, address) 
not(address = null) 
self.possesses.communicates->select(add = address).q->includes(message) 

Figure 59. Action Model 

Deliverables: Action Diagrams. 

8.11 Model Policies 
Typical tasks for which this is needed: Model Policy 

Technique description: During the organization design, the Policy Modeler captures either all desired or 
required properties of the system and writes them in natural language. Once all the policies have been 
identified, formally specify them using a formal language. For example, the policy: 

PI:   V al, a2: agent, r: role, al.plays (rl) Aal.plays (r2) => rl=r2, 

depicts that an agent only can play a role at a time. 

Deliverables: Policy Model. 
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9   WORK PRODUCTS 

9.1 Goal Model 

To capture the purpose or overall function of the artificial organization we use goals, and those goals are 
structured in the Goal Model by means of traditional class notation. Diamond and triangle notation is 
used to denote AND/OR goal decomposition, respectively. 

9.2 Refined Goal Model 

This is an extended version of the Goal Model. After executing the Goal Refinement task, the Refined 
Goal Model will include any attribute a Goal may have, and all goals precedence and triggering 
relationships. These relationships are represented with a directed arrow notation with the 
«precedes», «triggers» type designators respectively. 

9.3 Organization Model 

The Organization Model is a diagram that captures the interaction between the organization and 
external actors. Traditional class notation is used to represent the organization and external actors. The 
relation between the organization and external actors denote interaction protocols. 

9.4 Role Model 

A role model captures all the roles in the organization along with the goal(s) they achieve and possible 
interaction protocols. Boxes represent roles. Arrows between actors and roles or between two roles 
denote the initiator/responder relationship. Following traditional class notation, goals achieved by those 
roles will be annotated as attributes and denoted by the type designator «achieves». 

9.5 Role Description 
A Role Description Document is a textual description of each role. It captures the permissions and 
constraints associated with the role along with the sub-goals and capabilities required by that role. 

9.6 Agent Classes Model 
An Agent Classes Model defines the agent classes and sub-organizations that will populate the 
organization. The agent class is similar to an object class. Its attributes are the capabilities it possesses, 
and the roles it plays. 

9.7 Agent Plan Model 
An agent plan model follows traditional state diagrams (i.e., states, events, and transitions). 

9.8 Capability Model 
This model can include three levels of capabilities: Capability Action, Capability Protocol, and Capability 
Plan. A Capability Action is represented by means of traditional class notation. In addition, actions can be 
nested, that is, they can be composed by other Capability Actions. A Capability Protocol is a drawn 

similar to a traditional class identified with the protocol name. It can be nested, that is, it can be 

composed by other capability Protocol. A Capability Plan is a UML class identified by the plan name. This 
capability is composed by capability Actions, capability Protocols, and may or may not be include other 
capability Plans. 
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9.9 Protocol Model 
A Protocol Model consists of Protocol Diagrams as specified in. AUML. This model allows capturing 
alternative and repetitive message structures. Also, this model captures the different 
relations/interaction between two entities in an O-MaSE model such as in Role Model, Agent Model, or 
Organization Model. 

9.10 Domain Model 
A domain model contains the domain entities relevant to the organization, their attributes, and their 
relationships. This model uses traditional class notation to show the relationships between entities, 
producing a model similar to traditional class diagram. 

9.11 Policy Model 
A policy model is a document containing all the rules/constraints applicable to the system. These 
constraints are expressed by using First Order Predicate Logic. 

9.12 Action Model 
An Action Model is documented via pre- and post conditions for each Action. Each action defines at least 
one operation that implements the action effect/sense or ability an Agent has. 

10 PRODUCERS 

10.1 Goal Modeler 
This role is responsible for the generation of the Goal Model and the Refined Goal Model. The Goal 
Modeler therefore has to be able to read and understand the system description/SRS and also be able to 
interact and maintain a clear an open communication with the Domain Experts/Customers. This person 
requires knowledge about techniques: AND/OR Decomposition, and ATP Analysis, to create, validate and 
maintain the Goal Model and the Refined Goal Model. 

10.2 Organization Modeler 
This role is responsible for the generation of the Organization Model. The Organization Modeler 
therefore has to be able to read and understand organization diagrams and also be able to interact and 

maintain a clear an open communication with the Goal Modeler/Customers. This person requires 
knowledge about the techniques: AND/OR Decomposition, and ATP Analysis. 

10.3 Role Modeler 

This role is responsible for creating the Role Model and the Role Description work products. The skills 
required for this role are: knowledge about the O-MaSE Role Model specification and general knowledge 
about the system under analysis-design. This role may have close interaction with the Goal Modeler and 
Agent Modeler. 

10.4 Agent Classes Modeler 

This role is responsible for creating the Agent Class Model. This role requires skills and knowledge about 
the O-MaSE Agent Class Model specification. In addition, this role may interact with the Role Modeler 
and the Goal Modeler. 
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10.5 Plan Modeler 

This role is responsible for designing the agent's plans to achieve a set of goals. This role requires skills to 
create Finite State Automata and to understand O-MaSE Plan Model specification. This role may interact 
with the Goal Modeler and Agent Modeler. 

10.6 Capability Modeler 

This role is responsible for generating the Capability Model. This role requires O-MaSE Capability Model 
specification knowledge. The Capability Modeler may interact with the Role Modeler, Agent Class 
Modeler, and Goal Modeler. 

10.7 Protocol Modeler 

This role is responsible for generating the different protocols that may exist between Agents, Roles, and 

between Organization and external Actors. This role requires Agent-UML (Odell, Parunak & Bauer 2001) 
skills and may interact with the Organization Modeler, Agent Class Modeler, and Role Modeler. 

10.8 Policy Modeler 
This role is responsible for generating the different policies that may govern the Organization. Policies 
are specified using First Order Predicate Logic, (skill required by this Role), and may constrain Agents, 
Roles, Capabilities, Plans, etc., therefore this role may interact with the different O-MaSE modelers. 

10.9 Action Modeler 
This role is responsible for generating the Action Model. This role requires knowledge about the Action 
Analysis technique. In addition, this role requires knowledge about First Order Predicate Logic notation. 
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